Elementary scattering theory of the Si MOSFET

A simple one-flux scattering theory of the silicon MOSFET is introduced. Current-voltage (I-V) characteristics are expressed in terms of scattering parameters rather than a mobility. For long-channel transistors, the results reduce to conventional drift-diffusion theory, but they also apply to devices in which the channel length is comparable to or even shorter than the mean-free-path. The results indicate that for very short channels the transconductance is limited by carrier injection from the source. The theory also indicates that evaluation of the drain current in short-channel MOSFETs is a near-equilibrium transport problem, even though the channel electric field is large in magnitude and varies rapidly in space.

[1]  R. L. Longini,et al.  Alternative Approach to the Solution of Added Carrier Transport Problems in Semiconductors , 1961 .

[2]  J. S. Blakemore Semiconductor Statistics , 1962 .

[3]  F. P. Heiman,et al.  The insulated-gate field-effect transistor , 1962 .

[4]  C. Sah,et al.  The effects of fixed bulk charge on the characteristics of metal-oxide-semiconductor transistors , 1966 .

[5]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .

[6]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[7]  Ferry , 1972 .

[8]  Thermionic saturation of diffusion currents in transistors , 1972 .

[9]  F. Berz,et al.  Diffusion near an absorbing boundary , 1974 .

[10]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[11]  P. H. Ladbrooke,et al.  The physics of excess electron velocity in submicron‐channel FET’s , 1977 .

[12]  Rakesh Chadha,et al.  Computer Aided Design of Microwave Circuits , 1978 .

[13]  P. J. Price Chapter 4 Monte Carlo Calculation of Electron Transport in Solids , 1979 .

[14]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[15]  G. W. Taylor Velocity-saturated characteristics of short-channel MOSFETs , 1984, AT&T Bell Laboratories Technical Journal.

[16]  C.G. Sodini,et al.  The effect of high fields on MOS device and circuit performance , 1984, IEEE Transactions on Electron Devices.

[17]  T. Kobayashi,et al.  Two-dimensional analysis of velocity overshoot effects in ultrashort-channel Si MOSFET's , 1985, IEEE Transactions on Electron Devices.

[18]  H.I. Smith,et al.  Observation of electron velocity overshoot in sub-100-nm-channel MOSFET's in Silicon , 1985, IEEE Electron Device Letters.

[19]  Hao-Hsiung Lin,et al.  Transport theory of the double heterojunction bipolar transistor based on current balancing concept , 1986 .

[20]  Mark Lundstrom,et al.  An Ebers-Moll model for the heterostructure bipolar transistor , 1986 .

[21]  R.H. Dennard,et al.  Design and experimental technology for 0.1-µm gate-length low-temperature operation FET's , 1987, IEEE Electron Device Letters.

[22]  S. Chou,et al.  Relationship between measured and intrinsic transconductances of FET's , 1987, IEEE Transactions on Electron Devices.

[23]  H.I. Smith,et al.  Electron velocity overshoot at room and liquid nitrogen temperatures in silicon inversion layers , 1988, IEEE Electron Device Letters.

[24]  S. Laux,et al.  Monte-Carlo simulation of submicrometer Si n-MOSFETs at 77 and 300 K , 1988, IEEE Electron Device Letters.

[25]  R. Landauer Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988 .

[26]  D. Kern,et al.  High transconductance and velocity overshoot in NMOS devices at the 0.1- mu m gate-length level , 1988, IEEE Electron Device Letters.

[27]  Ping K. Ko,et al.  Chapter 1 - Approaches to Scaling , 1989 .

[28]  Mark Lundstrom,et al.  A scattering matrix approach to device simulation , 1990 .

[29]  Naoyuki Shigyo,et al.  Effects of microscopic fluctuations in dopant distributions on MOSFET threshold voltage , 1992 .

[30]  M. Stettler,et al.  Self-consistent scattering matrix calculation of the distribution function in semiconductor devices , 1992 .

[31]  Yuan Taur,et al.  Saturation transconductance of deep-submicron-channel MOSFETs , 1993 .

[32]  E. Sangiorgi,et al.  Silicon MOS transconductance scaling into the overshoot regime , 1993, IEEE Electron Device Letters.

[33]  M. Shur,et al.  Threshold voltage modeling and the subthreshold regime of operation of short-channel MOSFETs , 1993 .

[34]  M. Stettler,et al.  Formulation of the Boltzmann equation in terms of scattering matrices , 1993 .

[35]  C. Hu,et al.  Threshold voltage model for deep-submicrometer MOSFETs , 1993 .

[36]  H. Wong,et al.  Three-dimensional "atomistic" simulation of discrete random dopant distribution effects in sub-0.1 /spl mu/m MOSFET's , 1993, Proceedings of IEEE International Electron Devices Meeting.

[37]  Shinichi Tanaka,et al.  A compact HBT device model based on a one-flux treatment of carrier transport , 1994 .

[38]  M. Fukuma,et al.  Effects of the velocity saturated region on MOSFET characteristics , 1994 .

[39]  M. Stettler,et al.  A microscopic study of transport in thin base silicon bipolar transistors , 1994 .

[40]  H. Iwai,et al.  A 40 nm gate length n-MOSFET , 1995 .

[41]  D. K. Ferry,et al.  3D simulation of deep-submicron devices. How impurity atoms affect conductance , 1995 .

[42]  M. Lundstrom,et al.  A flux-based study of carrier transport in thin-base diodes and transistors , 1995 .

[43]  C. Strunk,et al.  Electron transport in mesoscopic structures , 1995 .

[44]  W. Mckinnon ONE-FLUX ANALYSIS OF CURRENT BLOCKING IN DOUBLE-HETEROSTRUCTURE BIPOLAR TRANSISTORS WITH COMPOSITE COLLECTORS , 1996 .

[45]  Maki Kishimoto,et al.  Solution of electromagnetic inverse problem using combinational method of Hopfield neural network and genetic algorithm , 1996 .

[46]  Young June Park,et al.  Drain current enhancement due to velocity overshoot effects and its analytic modeling , 1996 .