모델 예측 제어 기반 Cascaded H-bridge 컨버터의 균일한 손실, 스위칭 주파수, 전력 분배를 위한 알고리즘

A model predictive control (MPC) method without individual PWM has been recently researched to simplify and improve the control flexibility of a multilevel inverter. However, the input power of each H-bridge cell and the switching frequency of switching devices are unbalanced because of the use of a restricted switching state in the MPC method. This paper proposes a control method for balancing the switching patterns and cell power supplied from each isolated dc source of a cascaded H-bridge inverter. The supplied dc power from isolated dc sources of each H-bridge cells is balanced with the proposed cell balancing method. In addition, the switching frequency of each switching device of the CHB inverter becomes equal. A simulation and experimental results are presented with nine-level and five-level three-phase CHB inverter to validate the proposed balancing method.