A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria

This paper studies a nonzero-sum Dynkin game in discrete time under non-exponential discounting. For both players, there are two levels of game-theoretic reasoning intertwined. First, each player looks for an intra-personal equilibrium among her current and future selves, so as to resolve time inconsistency triggered by non-exponential discounting. Next, given the other player’s chosen stopping policy, each player selects a best response among her intrapersonal equilibria. A resulting inter-personal equilibrium is then a Nash equilibrium between the two players, each of whom employs her best intra-personal equilibrium with respect to the other player’s stopping policy. Under appropriate conditions, we show that an inter-personal equilibrium exists, based on concrete iterative procedures along with Zorn’s lemma. To illustrate our theoretic results, we investigate a two-player real options valuation problem: two firms negotiate a deal of cooperation to initiate a project jointly. By deriving inter-personal equilibria explicitly, we find that coercive power in negotiation depends crucially on the impatience levels of the two firms. MSC (2020): 60J20, 91A05, 91A07, 03E75.

[1]  Zhou Zhou,et al.  The Optimal Equilibrium for Time-Inconsistent Stopping Problems - The Discrete-Time Case , 2017, SIAM J. Control. Optim..

[2]  C. Lacour,et al.  Inhomogeneous and Anisotropic Conditional Density Estimation from Dependent Data , 2011 .

[3]  Sören Christensen,et al.  On Finding Equilibrium Stopping Times for Time-Inconsistent Markovian Problems , 2017, SIAM J. Control. Optim..

[4]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[5]  Yu-Jui Huang,et al.  Optimal Equilibria for Multidimensional Time-Inconsistent Stopping Problems , 2021, SIAM J. Control. Optim..

[6]  Eilon Solan,et al.  Two-player nonZero–sum stopping games in discrete time , 2004, math/0410173.

[7]  Yu-Jui Huang,et al.  Optimal equilibria for time‐inconsistent stopping problems in continuous time , 2017, Mathematical Finance.

[8]  J. Lepeltier,et al.  Le jeu de dynkin en theorie generale sans l'hypothese de mokobodski , 1984 .

[9]  I. Ekeland,et al.  Being serious about non-commitment: subgame perfect equilibrium in continuous time , 2006, math/0604264.

[10]  M. Sart Estimation of the transition density of a Markov chain , 2012, 1210.5165.

[11]  C. SIAMJ. CONTINUOUS-TIME DYNKIN GAMES WITH MIXED STRATEGIES , 2002 .

[12]  M. Yasuda On a randomized strategy in Neveu's stopping problem , 1985 .

[13]  R. Thaler,et al.  Anomalies: Intertemporal Choice , 1989 .

[14]  Erhan Bayraktar,et al.  Time Consistent Stopping for the Mean-Standard Deviation Problem --- The Discrete Time Case , 2018, SIAM J. Financial Math..

[15]  Xun Yu Zhou,et al.  General stopping behaviors of naïve and noncommitted sophisticated agents, with application to probability distortion , 2017, Mathematical Finance.

[16]  Elżbieta Z. Ferenstein,et al.  On Randomized Stopping Games , 2005 .

[17]  Sebastian Ebert,et al.  Weighted discounting - On group diversity, time-inconsistency, and consequences for investment , 2020, J. Econ. Theory.

[18]  H. Morimoto Dynkin games and martingale methods , 1984 .

[19]  Eilon Solan,et al.  Equilibrium in two-player non-zero-sum Dynkin games in continuous time , 2010, 1009.5627.

[20]  Soren Christensen,et al.  On time-inconsistent stopping problems and mixed strategy stopping times , 2018, Stochastic Processes and their Applications.

[21]  Tomas Björk,et al.  On time-inconsistent stochastic control in continuous time , 2016, Finance Stochastics.

[22]  Hiroaki Morimoto,et al.  Non-zero-sum discrete parameter stochastic games with stopping times , 1986 .

[23]  Yoshio Ohtsubo,et al.  A Nonzero-Sum Extension of Dynkin's Stopping Problem , 1987, Math. Oper. Res..

[24]  X. Zhou,et al.  MEAN–VARIANCE PORTFOLIO OPTIMIZATION WITH STATE‐DEPENDENT RISK AVERSION , 2014 .

[25]  Jianfeng Zhang,et al.  The Continuous Time Nonzero-Sum Dynkin Game Problem and Application in Game Options , 2008, SIAM J. Control. Optim..

[26]  Jakša Cvitanić,et al.  Backward stochastic differential equations with reflection and Dynkin games , 1996 .

[27]  Traian A. Pirvu,et al.  Time-Consistent Portfolio Management , 2010, SIAM J. Financial Math..

[28]  R. H. Strotz Myopia and Inconsistency in Dynamic Utility Maximization , 1955 .

[29]  Zhou Zhou,et al.  Equilibrium concepts for time‐inconsistent stopping problems in continuous time , 2019, Mathematical Finance.

[30]  Erhan Bayraktar,et al.  On the Robust Dynkin Game , 2015, 1506.09184.

[31]  R. McDonald,et al.  The Value of Waiting to Invest , 1982 .

[32]  I. Ekeland,et al.  Investment and consumption without commitment , 2007, 0708.0588.

[33]  James E. Smith,et al.  Valuing Risky Projects: Option Pricing Theory and Decision Analysis , 1995 .

[34]  Giorgio Ferrari,et al.  Nash equilibria of threshold type for two-player nonzero-sum games of stopping , 2015, 1508.03989.

[35]  N. Vieille,et al.  Stopping games with randomized strategies , 2001 .

[36]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[37]  J. Bismut Sur un problème de dynkin , 1977 .

[38]  D. Torgerson,et al.  Discounting , 1999 .

[39]  J. Yong Time-Inconsistent Optimal Control Problems and the Equilibrium HJB Equation , 2012, 1204.0568.

[40]  R. Thaler Some empirical evidence on dynamic inconsistency , 1981 .

[41]  Hideo Nagai,et al.  Non zero-sum stopping games of symmetric Markov processes , 1987 .

[42]  Yu-Jui Huang,et al.  Time-consistent stopping under decreasing impatience , 2015, Finance Stochastics.

[43]  Yu-Jui Huang,et al.  Optimal stopping under model ambiguity: A time‐consistent equilibrium approach , 2019, Mathematical Finance.

[44]  E. Prescott,et al.  Investment Under Uncertainty , 1971 .

[45]  E. B. Dynkin,et al.  Game variant of a problem on optimal stopping , 1969 .