Neutrosophic Completion Technique for Incomplete Higher-Order AHP Comparison Matrices

After the recent establishment of the Sustainable Development Goals and the Agenda 2030, the sustainable design of products in general and infrastructures in particular emerge as a challenging field for the development and application of multicriteria decision-making tools. Sustainability-related decision problems usually involve, by definition, a wide variety in number and nature of conflicting criteria, thus pushing the limits of conventional multicriteria decision-making tools practices. The greater the number of criteria and the more complex the relations existing between them in a decisional problem, the less accurate and certain are the judgments required by usual methods, such as the analytic hierarchy process (AHP). The present paper proposes a neutrosophic AHP completion methodology to reduce the number of judgments required to be emitted by the decision maker. This increases the consistency of their responses, while accounting for uncertainties associated to the fuzziness of human thinking. The method is applied to a sustainable-design problem, resulting in weight estimations that allow for a reduction of up to 22% of the conventionally required comparisons, with an average accuracy below 10% between estimates and the weights resulting from a conventionally completed AHP matrix, and a root mean standard error below 15%.

[1]  Víctor Yepes,et al.  Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights , 2019, Structure and Infrastructure Engineering.

[2]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[3]  George Yannis,et al.  State-of-the-art review on multi-criteria decision-making in the transport sector , 2020 .

[4]  Xi Liu,et al.  The neutrosophic number generalized weighted power averaging operator and its application in multiple attribute group decision making , 2015, International Journal of Machine Learning and Cybernetics.

[5]  I. Sumathi,et al.  New approach on differential equation via trapezoidal neutrosophic number , 2019, Complex & Intelligent Systems.

[6]  Pascal Lesage,et al.  Guidelines for Social Life Cycle Assessment of Products. : Social and socio-economic LCA guidelines complementing environmental LCA and Life Cycle Costing, contributing to the full assessment of goods and services within the context of sustainable development. , 2009 .

[7]  Hongying Zhang,et al.  Approaches to group decision making with incomplete information based on power geometric operators and triangular fuzzy AHP , 2015, Expert Syst. Appl..

[8]  Ying-Ming Wang,et al.  On the normalization of interval and fuzzy weights , 2006, Fuzzy Sets Syst..

[9]  Sattar Salehi,et al.  A risk component-based model to determine pipes renewal strategies in water distribution networks , 2020 .

[10]  Madjid Tavana,et al.  An aggregation method for solving group multi-criteria decision-making problems with single-valued neutrosophic sets , 2018, Appl. Soft Comput..

[11]  Yan Song,et al.  Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices , 2015, Ann. Oper. Res..

[12]  P. Harker Incomplete pairwise comparisons in the analytic hierarchy process , 1987 .

[13]  Jian-qiang Wang,et al.  A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems , 2017, Int. J. Syst. Sci..

[14]  Yong Hu,et al.  A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP , 2016, Ann. Oper. Res..

[15]  Naveen K. Chilamkurti,et al.  Three-way decisions based on neutrosophic sets and AHP-QFD framework for supplier selection problem , 2018, Future Gener. Comput. Syst..

[16]  Víctor Yepes,et al.  A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem , 2020, Mathematics.

[17]  N. Belie,et al.  A service life based global warming potential for high-volume fly ash concrete exposed to carbonation , 2014 .

[18]  Hong-yu Zhang,et al.  A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference relations with complete weight information , 2017, Neural Computing and Applications.

[19]  Yusuf Subas,et al.  A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems , 2016, International Journal of Machine Learning and Cybernetics.

[20]  T. Saaty,et al.  Why the magic number seven plus or minus two , 2003 .

[21]  Víctor Yepes,et al.  Social life cycle assessment of concrete bridge decks exposed to aggressive environments , 2018, Environmental Impact Assessment Review.

[22]  Víctor Yepes,et al.  The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm , 2020, Mathematics.

[23]  Didier Dubois,et al.  The role of fuzzy sets in decision sciences: Old techniques and new directions , 2011, Fuzzy Sets Syst..

[24]  Víctor Yepes,et al.  Method for estimating the social sustainability of infrastructure projects , 2017 .

[25]  J. Buckley,et al.  Fuzzy hierarchical analysis , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[26]  Víctor Yepes,et al.  Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge , 2020, Mathematics.

[27]  T. Chu,et al.  Ranking fuzzy numbers with an area between the centroid point and original point , 2002 .

[28]  Dan M. Frangopol,et al.  Multi-objective design of post-tensioned concrete road bridges using artificial neural networks , 2017, Structural and Multidisciplinary Optimization.

[29]  Mario Enea,et al.  Project Selection by Constrained Fuzzy AHP , 2004, Fuzzy Optim. Decis. Mak..

[30]  Mimica R. Milošević,et al.  Implementation of Adjusted Fuzzy AHP Method in the Assessment for Reuse of Industrial Buildings , 2020, Mathematics.

[31]  Madjid Tavana,et al.  A Review of Uncertain Decision-Making Methods in Energy Management Using Text Mining and Data Analytics , 2020, Energies.

[32]  B. Hedelin Complexity is no excuse , 2018, Sustainability Science.

[33]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[34]  Jun Ye,et al.  Subtraction and Division Operations of Simplified Neutrosophic Sets , 2017, Inf..

[35]  L. Price,et al.  CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY , 2001 .

[36]  Claudia P. Ostertag,et al.  Comparative life-cycle impact assessment of concrete manufacturing in Singapore , 2016, The International Journal of Life Cycle Assessment.

[37]  Chun-Nan Lin A Fuzzy Analytic Hierarchy Process-Based Analysis of the Dynamic Sustainable Management Index in Leisure Agriculture , 2020, Sustainability.

[38]  V. Yepes,et al.  Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges , 2017 .

[39]  Víctor Yepes,et al.  Social Sustainability in the Lifecycle of Chilean Public Infrastructure , 2016 .

[40]  Sunyong Kim,et al.  Multi-objective probabilistic optimum monitoring planning considering fatigue damage detection, maintenance, reliability, service life and cost , 2017 .

[41]  A. Gabus,et al.  World Problems, An Invitation to Further Thought within the Framework of DEMATEL , 1972 .

[42]  Rasmus Rempling,et al.  LIFE CYCLE SUSTAINABILITY ASSESSMENT FOR MULTI-CRITERIA DECISION MAKING IN BRIDGE DESIGN: A REVIEW , 2020 .

[43]  M. Bohanec,et al.  The Analytic Hierarchy Process , 2004 .

[44]  Alaa Mohamed Riad,et al.  Neutrosophic AHP Multi Criteria Decision Making Method Applied on the Selection of Learning Management System , 2017 .

[45]  Tatiana García-Segura,et al.  Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty , 2018, Journal of Cleaner Production.

[46]  Lajos Rónyai,et al.  On optimal completion of incomplete pairwise comparison matrices , 2010, Math. Comput. Model..