2PARMA: Parallel Paradigms and Run-Time Management Techniques for Many-Core Architectures

The main goals of the 2PARMA project are: the definition of a parallel programming model combining component-based and single-instruction multiple-thread approaches, instruction set virtualisation based on portable byte-code, run-time resource management policies and mechanisms as well as design space exploration methodologies for many-core computing architectures.

[1]  Gauthier Lafruit,et al.  Cross-Based Local Stereo Matching Using Orthogonal Integral Images , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[2]  Kaushik R. Chowdhury,et al.  A survey on MAC protocols for cognitive radio networks , 2009, Ad Hoc Networks.

[3]  Andreas Achtzehn,et al.  A flexible MAC development framework for cognitive radio systems , 2011, 2011 IEEE Wireless Communications and Networking Conference.

[4]  Giovanni Agosta,et al.  Parallelism and Retargetability in the ILDJIT Dynamic Compiler , 2010, ARCS Workshops.

[5]  V. Derudder,et al.  A 200Mbps+ 2.14nJ/b digital baseband multi processor system-on-chip for SDRs , 2009, 2009 Symposium on VLSI Circuits.

[6]  Gerd Ascheid,et al.  Efficient and portable SDR waveform development: The Nucleus concept , 2009, MILCOM 2009 - 2009 IEEE Military Communications Conference.

[7]  Grant Martin,et al.  Surviving the SOC Revolution: A Guide to Platform-Based Design , 1999 .

[8]  Giovanni Agosta,et al.  A highly flexible, parallel virtual machine: design and experience of ILDJIT , 2010, Softw. Pract. Exp..

[9]  Chantal Ykman-Couvreur,et al.  Systematic Methodology for Real-Time Cost-Effective Mapping of Dynamic Concurrent Task-Based Systems on Heterogenous Platforms , 2007 .

[10]  William Fornaciari,et al.  A Hierarchical Distributed Control for Power and Performances Optimization of Embedded Systems , 2010, ARCS.

[11]  Andreas Achtzehn,et al.  Decomposable MAC Framework for Highly Flexible and Adaptable MAC Realizations , 2010, 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN).

[12]  Rudy Lauwereins,et al.  ADRES: An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix , 2003, FPL.

[13]  Benno Stabernack,et al.  Profiling-Based Hardware/Software Co-Exploration for the Design of Video Coding Architectures , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[14]  Giovanni Agosta,et al.  Improved Programming of GPU Architectures through Automated Data Allocation and Loop Restructuring , 2011, ARCS Workshops.

[15]  Francky Catthoor,et al.  Software metadata: Systematic characterization of the memory behaviour of dynamic applications , 2010, J. Syst. Softw..

[16]  Heiko Schwarz,et al.  Overview of the Scalable Video Coding Extension of the H.264/AVC Standard , 2007, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  V. Derudder,et al.  A 10.37 mm2 675 mW reconfigurable LDPC and Turbo encoder and decoder for 802.11n, 802.16e and 3GPP-LTE , 2010, 2010 Symposium on VLSI Circuits.