Computing with Polynomials Given By Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators

Algorithms are developed that adopt a novel implicit representation for multivariate polynomials and rational functions with rational coefficients, that of black boxes for their evaluation. We show that within this representation the polynomial greatest common divisor and factorization problems, as well as the problem of extracting the numerator and denominator of a rational function, can all be solved in random polynomial-time. Since we can convert black boxes efficiently to sparse format, problems with sparse solutions, e.g., sparse polynomial factorization and sparse multivariate rational function interpolation, are also in random polynomial time. Moreover, the black box representation is one of the most space efficient implicit representations that we know. Therefore, the output programs can be easily distributed over a network of processors for further manipulation, such as sparse interpolation.

[1]  Erich Kaltofen,et al.  Greatest common divisors of polynomials given by straight-line programs , 1988, JACM.

[2]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[3]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[4]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[5]  Erich Kaltofen,et al.  Effective Hilbert Irreducibility , 1984, Inf. Control..

[6]  W. Gragg,et al.  The Padé Table and Its Relation to Certain Algorithms of Numerical Analysis , 1972 .

[7]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[8]  Joachim von zur Gathen,et al.  Parallel algorithms for algebraic problems , 1983, SIAM J. Comput..

[9]  Erich Kaltofen,et al.  Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..

[10]  C. B. García,et al.  Finding all solutions to polynomial systems and other systems of equations , 1979, Math. Program..

[11]  S. Comput,et al.  POLYNOMIAL-TIME REDUCTIONS FROM MULTIVARIATE TO BI- AND UNIVARIATE INTEGRAL POLYNOMIAL FACTORIZATION* , 1985 .

[12]  Joachim von zur Gathen Parallel algorithms for algebraic problems , 1983, STOC '83.

[13]  F. Drexler Eine Methode zur berechnung sämtlicher Lösungen von Polynomgleichungssystemen , 1977 .

[14]  W. Zulehner A simple homotopy method for determining all isolated solutions to polynomial systems , 1988 .

[15]  Wendy Hall,et al.  The art of programming , 1987 .

[16]  Erich Kaltofen,et al.  Solving systems of nonlinear polynomial equations faster , 1989, ISSAC '89.

[17]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[18]  James A. Yorke,et al.  Numerically determining solutions of systems of polynomial equations , 1988 .

[19]  Joachim von zur Gathen Representations and Parallel Computations for Rational Functions , 1986, SIAM J. Comput..

[20]  Erich Kaltofen,et al.  Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.

[21]  J. Calmet Computer Algebra , 1982 .

[22]  Barry M. Trager,et al.  Algebraic factoring and rational function integration , 1976, SYMSAC '76.

[23]  David R. Musser,et al.  Multivariate Polynomial Factorization , 1975, JACM.

[24]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[25]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[26]  Erich Kaltofen,et al.  Dagwood: a system for manipulating polynomials given by straight-line programs , 1988, TOMS.

[27]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[28]  Erich Kaltofen,et al.  Uniform closure properties of P-computable functions , 1986, STOC '86.

[29]  Erich Kaltofen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..

[30]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[31]  J. von zur Gathen Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[32]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[33]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.