The Expurgation-Augmentation Method for Constructing Good Plane Subspace Codes

As shown in [28], one of the five isomorphism types of optimal binary subspace codes of size 77 for packet length v=6, constant dimension k=3 and minimum subspace distance d=4 can be constructed by first expurgating and then augmenting the corresponding lifted Gabidulin code in a fairly simple way. The method was refined in [32,26] to yield an essentially computer-free construction of a currently best-known plane subspace code of size 329 for (v,k,d)=(7,3,4). In this paper we generalize the expurgation-augmentation approach to arbitrary packet length v, providing both a detailed theoretical analysis of our method and computational results for small parameters. As it turns out, our method is capable of producing codes larger than those obtained by the echelon-Ferrers construction and its variants. We are able to prove this observation rigorously for packet lengths v = 3 mod 4.

[1]  Natalia Silberstein,et al.  Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks , 2014, IEEE Transactions on Information Theory.

[2]  Frank R. Kschischang,et al.  Communication Over Finite-Field Matrix Channels , 2008, IEEE Transactions on Information Theory.

[3]  Sascha Kurz,et al.  Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4 , 2014 .

[4]  Tuvi Etzion,et al.  Galois geometries and coding theory , 2016, Des. Codes Cryptogr..

[5]  Leo Storme,et al.  On the extendability of particular classes of constant dimension codes , 2016, Des. Codes Cryptogr..

[6]  Antonio Cossidente,et al.  On subspace codes , 2016, Des. Codes Cryptogr..

[7]  Qi Cheng,et al.  Constructing high order elements through subspace polynomials , 2012, SODA.

[8]  Eli Ben-Sasson,et al.  Subspace Polynomials and Cyclic Subspace Codes , 2014, IEEE Transactions on Information Theory.

[9]  Eliakim Hastings Moore A two-fold generalization of Fermat’s theorem , 1896 .

[10]  Sascha Kurz,et al.  Optimal Binary Subspace Codes of Length 6 , Constant Dimension 3 and Minimum Subspace Distance 4 , 2014 .

[11]  David L. Wehlau,et al.  Modular Invariant Theory , 2011 .

[12]  Larry Smith,et al.  Polynomial Invariants of Finite Groups , 1995 .

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  LeRoy B. Beasley Spaces of rank-2 matrices over GF(2). , 1999 .

[15]  Aart Blokhuis,et al.  Finite Geometries , 2018, Des. Codes Cryptogr..

[16]  Harm Derksen,et al.  Computational Invariant Theory , 2002 .

[17]  O. Ore On a special class of polynomials , 1933 .

[18]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[19]  Zhen Zhang,et al.  Linear Network Error Correction Coding , 2014, SpringerBriefs in Computer Science.

[20]  Albrecht Beutelspacher,et al.  Partial spreads in finite projective spaces and partial designs , 1975 .

[21]  Frank R. Kschischang,et al.  An Introduction to Network Coding , 2012 .

[22]  Reihaneh Safavi-Naini,et al.  Linear authentication codes: bounds and constructions , 2001, IEEE Trans. Inf. Theory.

[23]  Larry Smith,et al.  Polynomial invariants of finite groups. A survey of recent developments , 1997 .

[24]  Thomas Honold,et al.  On putative q-analogues of the Fano plane and related combinatorial structures , 2015, 1504.06688.

[25]  Sascha Kurz,et al.  Constructions and bounds for mixed-dimension subspace codes , 2015, Adv. Math. Commun..

[26]  Joachim Rosenthal,et al.  New Improvements on the Echelon-Ferrers Construction , 2010, ArXiv.

[27]  Heather Jordon,et al.  The maximum size of a partial 3-spread in a finite vector space over GF(2) , 2010, Des. Codes Cryptogr..

[28]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[29]  Eli Ben-Sasson,et al.  Affine dispersers from subspace polynomials , 2009, STOC '09.

[30]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[31]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[32]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[33]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[34]  Patric R. J. Östergård,et al.  New Lower Bounds for Binary Constant-Dimension Subspace Codes , 2018, Exp. Math..

[35]  P. Östergård,et al.  EXISTENCE OF $q$ -ANALOGS OF STEINER SYSTEMS , 2013, Forum of Mathematics, Pi.

[36]  Jaikumar Radhakrishnan,et al.  Subspace Polynomials and Limits to List Decoding of Reed–Solomon Codes , 2010, IEEE Transactions on Information Theory.

[37]  L. Storme,et al.  Current Research Topics on Galois Geometry , 2011 .

[38]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[39]  Sascha Kurz Improved upper bounds for partial spreads , 2017, Des. Codes Cryptogr..

[40]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[41]  Tuvi Etzion,et al.  Problems on q-Analogs in Coding Theory , 2013, ArXiv.

[42]  Clarence W. Wilkerson,et al.  A PRIMER ON THE DICKSON INVARIANTS , 1997 .

[43]  Thomas Honold,et al.  Poster: A new approach to the Main Problem of Subspace Coding , 2014, 9th International Conference on Communications and Networking in China.

[44]  Leonard Eugene Dickson,et al.  A fundamental system of invariants of the general modular linear group with a solution of the form problem , 1911 .

[45]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.

[47]  Alfred Wassermann,et al.  Tables of subspace codes , 2016, ArXiv.

[48]  Michael Braun,et al.  q‐Analogs of Packing Designs , 2012, 1212.4614.

[49]  Natalia Silberstein,et al.  Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[50]  Tuvi Etzion,et al.  The Asymptotic Behavior of Grassmannian Codes , 2011, IEEE Transactions on Information Theory.