Three-dimensional shape measurement of micro-lens arrays using full-field swept-source optical coherence tomography

We report three-dimensional (3D) shape measurement of refracting samples using full field swept-source optical coherence tomographic (FF-SS-OCT) system. The optical arrangement of FF-SS-OCT consists of a swept-source system containing super-luminescent diode as low coherence light source and an acousto-optic tunable filter as electronically controlled frequency tuning device, a compact Michelson interferometer and an area detector. Refracting samples, such as, cylindrical lens and micro-lens arrays were used as object. By means of sweeping the frequency of the light source, multiple interferograms were recorded and both amplitude and phase map of the interference fringe signal were then reconstructed. Experimental results of optically sectioned images (tomography) of the cylindrical lens and micro-lens arrays obtained by means of selective Fourier filtering and 3D-surface profile retrieved from the phase-map are demonstrated. The proposed system does not require any mechanical scanning. In addition, a common optical path enables this proposed technique to be highly stable.

[1]  Chandra Shakher,et al.  Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography , 2009 .

[2]  T Lépine,et al.  Low coherence interferometry for central thickness measurement of rigid and soft contact lenses. , 2009, Optics express.

[3]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[4]  S. Haselbeck,et al.  Microlenses fabricated by melting a photoresist on a base layer , 1993 .

[5]  Yongwoo Park,et al.  Simple scanning fibre-optic confocal microscopy for the refractive index profile measurement of an optical fibre , 2002 .

[6]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[7]  S. Sinzinger,et al.  Index-distributed planar microlenses for three-dimensional micro-optics fabricated by silver-sodium ion exchange in BGG35 substrates. , 1994, Applied optics.

[8]  Jiao Guohua,et al.  Research on micro-optical lenses fabrication technology , 2007 .

[9]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[10]  Hans J. Tiziani,et al.  Optical inspection and characterization of microoptics using confocal microscopy , 2001 .

[11]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[12]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[13]  H. Zappe,et al.  Fabrication and testing of micro-lens arrays by all-liquid techniques , 2004 .

[14]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[15]  D. Stifter,et al.  Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography , 2007 .

[16]  S. H. Wang,et al.  Integrated optical inspection on surface geometry and refractive index distribution of a microlens array , 2003 .

[17]  Margaret B. Stern,et al.  Preshaping photoresist for refractive microlens fabrication , 1994 .

[18]  C. Croutxé-Barghorn,et al.  Fabrication of refractive microlens arrays by visible irradiation of acrylic monomers: influence of photonic parameters , 2001 .

[19]  E. Cuche,et al.  Characterization of microlenses by digital holographic microscopy. , 2006, Applied optics.

[20]  Joseph M. Schmitt,et al.  Optical coherence tomography (OCT): a review , 1999 .

[21]  Markku Kuittinen,et al.  Common-path interferometer with diffractive lens. , 2006, Optics express.

[22]  S. Yun,et al.  Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range. , 2006, Optics express.

[23]  Peter Loosen,et al.  Cylindrical microlenses for collimating high-power diode lasers , 1997, Other Conferences.

[24]  Changhuei Yang,et al.  Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers. , 2005, Optics express.

[25]  Hans Zappe,et al.  Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing. , 2005, Applied optics.

[26]  M. Gijs,et al.  Fabrication and Characterization of Three-Dimensional Microlens Arrays in Sol-Gel Glass , 2006, Journal of Microelectromechanical Systems.

[27]  Hugo Thienpont,et al.  Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization , 2002 .

[28]  D. Stifter,et al.  Quantitative phase reconstruction for orthogonal-scanning differential phase-contrast optical coherence tomography. , 2009, Optics letters.

[29]  Takaaki Miyashita,et al.  Standardization for Microlenses and Microlens Arrays , 2007 .

[30]  Martin A. M. Gijs,et al.  Fabrication of three-dimensional microlens arrays in sol-gel glass , 2006 .

[31]  M. Hutley,et al.  The manufacture of microlenses by melting photoresist , 1990 .

[32]  Johannes Schwider,et al.  Characterization of microlenses using a phase-shifting shearing interferometer , 1994 .

[33]  Johannes Schwider,et al.  Twyman-Green interferometer for testing microspheres , 1995 .

[34]  B. Bouma,et al.  Handbook of Optical Coherence Tomography , 2001 .

[35]  P. Nussbaum,et al.  Design, fabrication and testing of microlens arrays for sensors and microsystems , 1997 .

[36]  George Smith,et al.  Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[38]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[39]  Chandra Shakher,et al.  Fingerprint detection using full-field swept-source optical coherence tomography , 2007 .

[40]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.