Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions

We consider the problem of the absence of backscattering in the transport of Manakov solitons on a line. The concept of transparent boundary conditions is used for modeling the reflectionless propagation of Manakov vector solitons in a one-dimensional domain. Artificial boundary conditions that ensure the absence of backscattering are derived and their numerical implementation is demonstrated.

[1]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[2]  Jianke Yang,et al.  Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics , 1999 .

[3]  Ziwen Jiang,et al.  Efficient semi-implicit compact finite difference scheme for nonlinear Schrödinger equations on unbounded domain , 2020 .

[4]  J. M. Sanz-Serna,et al.  An easily implementable fourth-order method for the time integration of wave problems , 1992 .

[5]  Xiaoliang Cheng,et al.  Numerical solution to coupled nonlinear Schrödinger equations on unbounded domains , 2010, Math. Comput. Simul..

[6]  CH' , 2018, Dictionary of Upriver Halkomelem.

[7]  Yuri S. Kivshar,et al.  Optical Solitons: From Fibers to Photonic Crystals , 2003 .

[8]  B. M. Fulk MATH , 1992 .

[9]  Christophe Besse,et al.  Absorbing boundary conditions for solving N-dimensional stationary Schrodinger equations with unbounded potentials and nonlinearities , 2011 .

[10]  Yasuhiro Ohta,et al.  General N‐Dark–Dark Solitons in the Coupled Nonlinear Schrödinger Equations , 2011 .

[11]  M. Lakshmanan,et al.  Bright and dark soliton solutions to coupled nonlinear Schrodinger equations , 1995 .

[12]  Matthias Ehrhardt Discrete Transparent Boundary Conditions for General Schrödinger-type Equations , 1999, VLSI Design.

[13]  D. J. Frantzeskakis,et al.  Dark solitons in atomic Bose–Einstein condensates: from theory to experiments , 2010, 1004.4071.

[14]  D. Matrasulov,et al.  Exciton dynamics in branched conducting polymers: Quantum graphs based approach , 2019, 1906.08639.

[15]  Christophe Besse,et al.  Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, SIAM J. Numer. Anal..

[16]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability , 2003 .

[17]  Jan W. Gooch Stud , 2020, The Fairchild Books Dictionary of Fashion.

[18]  Jianke Yang,et al.  Suppression of Manakov soliton interference in optical fibers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Kang,et al.  Observation of Manakov spatial solitons in AlGaAs planar waveguides. , 1996, Physical review letters.

[20]  Matthias Ehrhardt,et al.  Absorbing Boundary Conditions for Hyperbolic Systems , 2010 .

[21]  Xiaonan Wu,et al.  Local absorbing boundary conditions for nonlinear wave equation on unbounded domain. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. Yusupov,et al.  Transparent vertex boundary conditions for quantum graphs: Simplified approach , 2019, Nanosystems: Physics, Chemistry, Mathematics.

[23]  Christophe Besse,et al.  Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential , 2009, J. Comput. Phys..

[24]  M. Lakshmanan,et al.  Bright-dark solitons and their collisions in mixed N -coupled nonlinear Schrödinger equations , 2007, 0711.4424.

[25]  Leslie Greengard,et al.  Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension , 2004 .

[26]  Matthias Ehrhardt Discrete transparent boundary conditions for Schrödinger-type equations for non-compactly supported initial data , 2008 .

[27]  Q. Chang,et al.  New numerical methods for the coupled nonlinear Schrödinger equations , 2010 .

[28]  M. Ablowitz,et al.  Soliton interactions in the vector NLS equation , 2004 .

[29]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schr ¨ odinger equation on circular domains , 2012 .

[30]  Matthias Ehrhardt,et al.  Discrete Transparent Boundary Conditions for Wide Angle Parabolic Equations in Underwater Acoustics , 1998 .

[31]  Milivoj Belić,et al.  Rogue waves in a two-component Manakov system with variable coefficients and an external potential. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  D. Matrasulov,et al.  Dirac particles in transparent quantum graphs: Tunable transport of relativistic quasiparticles in branched structures. , 2020, Physical review. E.

[33]  Chunxiong Zheng,et al.  Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, J. Comput. Phys..

[34]  Thiab R. Taha,et al.  Numerical simulation of coupled nonlinear Schrödinger equation , 2001 .

[35]  K Steiglitz,et al.  Time-gated Manakov spatial solitons are computationally universal. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  M. Lakshmanan,et al.  Singularity-structure analysis and Hirota's bilinearisation of the Davey-Stewartson equation , 1987 .

[37]  P. Kevrekidis,et al.  Solitons in coupled nonlinear Schrödinger models: A survey of recent developments , 2016 .

[38]  D. Matrasulov,et al.  Transparent nonlinear networks. , 2019, Physical review. E.

[39]  Jarmo Hietarinta,et al.  Inelastic Collision and Switching of Coupled Bright Solitons in Optical Fibers , 1997, solv-int/9703008.

[40]  Thiab R. Taha,et al.  A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation , 2007, Math. Comput. Simul..

[41]  M. S. Ismail Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method , 2008, Math. Comput. Simul..

[42]  Andrew G. Glen,et al.  APPL , 2001 .

[43]  D. Matrasulov,et al.  Transparent quantum graphs , 2018, Physics Letters A.

[44]  Yuri S. Kivshar,et al.  Polarized dark solitons in isotropic Kerr media , 1997 .

[45]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[46]  Lu-ming Zhang,et al.  Numerical approximation of solution for the coupled nonlinear Schrödinger equations , 2017 .

[47]  M. S. Ismail,et al.  Highly accurate finite difference method for coupled nonlinear Schrödinger equation , 2004, Int. J. Comput. Math..

[48]  Bao-Feng Feng,et al.  General N-soliton solution to a vector nonlinear Schrödinger equation , 2014 .

[49]  Govind P. Agrawal,et al.  Applications of Nonlinear Fiber Optics , 2001 .

[50]  M Lakshmanan,et al.  Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. , 2001, Physical review letters.

[51]  Matthias Ehrhardt,et al.  Discrete artificial boundary conditions for nonlinear Schrödinger equations , 2008, Math. Comput. Model..