Variants of openness

Algebraic conditions on frame homomorphisms representing various types of openness requirements on continuous maps are investigated. It turns out that several of these can be expressed in terms of formulas involving pseudocomplements. A full classification of the latter is presented which shows that they group into five equivalence classes and establishes the logical connections between them. Among the relation of our algebraic conditions to continuous maps between topological spaces, we establish that the coincidence of the algebraic and topological notion of openness is equivalent to the separation axiomTD for the domain space.