Theory of spin glasses

A new theory of the class of dilute magnetic alloys, called the spin glasses, is proposed which offers a simple explanation of the cusp found experimentally in the susceptibility. The argument is that because the interaction between the spins dissolved in the matrix oscillates in sign according to distance, there will be no mean ferro- or antiferromagnetism, but there will be a ground state with the spins aligned in definite directions, even if these directions appear to be at random. At the critical temperature the existence of these preferred directions affects the orientation of the spins, leading to a cusp in the susceptibility. This cusp is smoothed by an external field. Although the behaviour at low t needs a quantum mechanical treatment, it is interesting to complete the classical calculations down to t=0. Classically the susceptibility tends to a constant value at t=0, and the specific heat to a constant value.