Lead diversification. Application to existing drug molecules: mifepristone 1 and antalarmin 8.

[1]  A. Borovik Role of metal-oxo complexes in the cleavage of C-H bonds. , 2011, Chemical Society reviews.

[2]  C. Che,et al.  Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. , 2011, Chemical Society reviews.

[3]  J. Du Bois,et al.  C-H hydroxylation using a heterocyclic catalyst and aqueous H2O2. , 2009, Angewandte Chemie.

[4]  M. Sanford,et al.  Insights into directing group ability in palladium-catalyzed C-H bond functionalization. , 2008, Journal of the American Chemical Society.

[5]  M. Sanford,et al.  Reactivity of Pd(II) complexes with electrophilic chlorinating reagents: isolation of Pd(IV) products and observation of C-Cl bond-forming reductive elimination. , 2007, Journal of the American Chemical Society.

[6]  G. S. Walker,et al.  Efficient Use of the Iron Ortho‐Nitrophenylporphyrin Chloride to Mimic Biological Oxidations of Dimethylaminoantipyrine , 2007, Chemical biology & drug design.

[7]  Meenakshi Sharma,et al.  DDQ catalyzed benzylic acetoxylation of arylalkanes: a case of exquisitely controlled oxidation under sonochemical activation ☆ , 2007 .

[8]  G. Chrousos,et al.  Potential Uses of Corticotropin‐Releasing Hormone Antagonists , 2006, Annals of the New York Academy of Sciences.

[9]  M. Sanford,et al.  A simple catalytic method for the regioselective halogenation of arenes. , 2006, Organic letters.

[10]  M. Sanford,et al.  Palladium-catalyzed fluorination of carbon-hydrogen bonds. , 2006, Journal of the American Chemical Society.

[11]  M. Sanford,et al.  Transition metal catalyzed oxidative functionalization of carbon-hydrogen bonds , 2006 .

[12]  M. Sanford,et al.  Oxone as an inexpensive, safe, and environmentally benign oxidant for C-H bond oxygenation. , 2006, Organic letters.

[13]  N. Miyaura,et al.  Iridium-catalyzed borylation of arenes and heteroarenes via C-H activation , 2006 .

[14]  S. Noji,et al.  Manganese-catalyzed enantioselective oxidation of C–H bonds of alkanes and silyl ethers to optically active ketones , 2005 .

[15]  J. Kampf,et al.  Unusually stable palladium(IV) complexes: detailed mechanistic investigation of C-O bond-forming reductive elimination. , 2005, Journal of the American Chemical Society.

[16]  M. Sanford,et al.  Regioselectivity in palladium-catalyzed C-H activation/oxygenation reactions. , 2005, Organic letters.

[17]  M. Sanford,et al.  Oxidative C-H activation/C-C bond forming reactions: synthetic scope and mechanistic insights. , 2005, Journal of the American Chemical Society.

[18]  P. Prakash,et al.  Reaction of a satirically hindered iron(III) porphyrin with peroxyacetic acid: Degradation kinetics , 2005 .

[19]  P. Tagliatesta,et al.  Metalloporphyrin Catalysts for Organic Synthesis , 2004 .

[20]  M. Bagherzadeh,et al.  Reactivity studies of biomimetic catalytic epoxidation of alkenes with tetrabutylammonium periodate in the presence of various manganese porphyrins and nitrogen donors: significant axial ligand π-bonding effects , 2004 .

[21]  B. Meunier,et al.  Biomimetic Chemical Catalysts in the Oxidative Activation of Drugs , 2004 .

[22]  J. Borel History of the discovery of cyclosporin and of its early pharmacological development. , 2002, Wiener klinische Wochenschrift.

[23]  P. Vérité,et al.  Improvement of a biomimetic porphyrin catalytic system by addition of acids. , 2002, Chemical & pharmaceutical bulletin.

[24]  N. Miyaura,et al.  Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. , 2002, Journal of the American Chemical Society.

[25]  J. Groves Reactivity and mechanisms of metalloporphyrin‐ catalyzed oxidations , 2000 .

[26]  P. Sigler,et al.  Atomic structure of progesterone complexed with its receptor , 1998, Nature.

[27]  Anne W. Schmidt,et al.  CP-154,526: a potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. R. Hill,et al.  Metalloporphyrins as chemical mimics of cytochrome P-450 systems , 1994 .

[29]  F. Fontana,et al.  New free-radical syntheses under Gif-Barton oxidation conditions , 1994 .

[30]  F. Fontana,et al.  Mechanism of the Gif-Barton type alkane functionalization by halide and pseudohalide ions , 1994 .

[31]  F. Fontana,et al.  New syntheses of mixed peroxides under Gif–Barton oxidation of alkylbenzenes, conjugated alkenes and alkanes; a free-radical mechanism , 1994 .

[32]  S. Murahashi Biomimetic oxidation in organic synthesis using transition metal catalysts , 1992 .

[33]  B. Meunier,et al.  Model systems for metabolism studies. Biomimetic oxidation of acetaminophen and ellipticine derivatives with water-soluble metalloporphyrins associated to potassium monopersulfate. , 1991, Drug metabolism and disposition: the biological fate of chemicals.

[34]  B. Waegell,et al.  Ruthenium-catalyzed controlled functionalization of the norbornane skeleton , 1991 .

[35]  S. Imaoka,et al.  Aminopyrine metabolism by multiple forms of cytochrome P-450 from rat liver microsomes: simultaneous quantitation of four aminopyrine metabolites by high-performance liquid chromatography. , 1988, Archives of biochemistry and biophysics.

[36]  M. Okuhara,et al.  FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. , 1987, The Journal of antibiotics.

[37]  K. Venkataraman,et al.  Cyanuric chloride : a useful reagent for converting carboxylic acids into chlorides, esters, amides and peptides , 1979 .

[38]  M. Kharasch,et al.  Communications - A Modification of Free Radical Reactions , 1958 .