Noise-induced suppression of periodic travelling waves in oscillatory reaction–diffusion systems

Ecological field data suggest that some species show periodic changes in abundance over time and in a specific spatial direction. Periodic travelling waves as solutions to reaction–diffusion equations have helped to identify possible scenarios, by which such spatio-temporal patterns may arise. In this paper, such solutions are tested for their robustness against an irregular temporal forcing, since most natural populations can be expected to be subject to erratic fluctuations imposed by the environment. It is found that small environmental noise is able to suppress periodic travelling waves in stochastic variants of oscillatory reaction–diffusion systems. Irregular spatio-temporal oscillations, however, appear to be more robust and persist under the same stochastic forcing.

[1]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[2]  J. Sherratt,et al.  Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models , 2008, Journal of The Royal Society Interface.

[3]  H G Solari,et al.  Sustained oscillations in stochastic systems. , 2001, Mathematical biosciences.

[4]  N. Shigesada,et al.  Traveling periodic waves in heterogeneous environments , 1986 .

[5]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[6]  S. Petrovskii,et al.  Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. , 2001, Theoretical population biology.

[7]  M. Saunders,et al.  Plant-Provided Food for Carnivorous Insects: a Protective Mutualism and Its Applications , 2009 .

[8]  Bath Ba SPATIAL STRUCTURES AND PERIODIC TRAVELLING WAVES IN AN INTEGRO-DIFFERENTIAL REACTION-DIFFUSION POPULATION MODEL* , 1990 .

[9]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[10]  Rachel Kuske,et al.  Sustained oscillations via coherence resonance in SIR. , 2007, Journal of theoretical biology.

[11]  Lutz Schimansky-Geier,et al.  Constructive effects of environmental noise in an excitable prey–predator plankton system with infected prey , 2007 .

[12]  Ciriyam Jayaprakash,et al.  Impact of noise on bistable ecological systems , 2007 .

[13]  Veijo Kaitala,et al.  Travelling waves in vole population dynamics , 1997, Nature.

[14]  Jonathan A. Sherratt,et al.  Periodic travelling waves in cyclic predator–prey systems , 2001 .

[15]  Alison L. Kay,et al.  Spatial Noise Stabilizes Periodic Wave Patterns in Oscillatory Systems on Finite Domains , 2000, SIAM J. Appl. Math..

[16]  S. Carpenter,et al.  Catastrophic regime shifts in ecosystems: linking theory to observation , 2003 .

[17]  Luca Ridolfi,et al.  Noise-induced stability in dryland plant ecosystems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Sergei Petrovskii,et al.  Critical phenomena in plankton communities: KISS model revisited , 2000 .

[19]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[20]  Michael P. Hassell,et al.  Spatial structure and chaos in insect population dynamics , 1991, Nature.

[21]  Sergei Petrovskii,et al.  Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems , 2003, Bulletin of mathematical biology.

[22]  J A Sherratt,et al.  Generation of periodic waves by landscape features in cyclic predator–prey systems , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  Frank Mathias Hilker,et al.  Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection , 2005, Math. Comput. Model..

[24]  Jonathan A. Sherratt,et al.  Periodic Travelling Wave Selection by Dirichlet Boundary Conditions in Oscillatory Reaction-Diffusion Systems , 2003, SIAM J. Appl. Math..

[25]  John H. Steele,et al.  A comparison of terrestrial and marine ecological systems , 1985, Nature.

[26]  P. Yodzis,et al.  THE COLOR OF ENVIRONMENTAL NOISE , 2004 .

[27]  C. S. Holling The components of prédation as revealed by a study of small-mammal prédation of the European pine sawfly. , 1959 .

[28]  O. Hogstad,et al.  Waves and synchrony in Epirrita autumnata/Operophtera brumata outbreaks. I. Lagged synchrony: regionally, locally and among species. , 2007, The Journal of animal ecology.

[29]  G. Hutchinson,et al.  An Introduction to Population Ecology , 1978 .

[30]  René Lefever,et al.  Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology , 2007 .

[31]  J. Sherratt,et al.  Oscillatory reaction-diffusion equations with temporally varying parameters , 2004 .

[32]  Sergei Petrovskii,et al.  A minimal model of pattern formation in a prey-predator system , 1999 .

[33]  David A. Elston,et al.  Spatial asynchrony and periodic travelling waves in cyclic populations of field voles , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  K. Maginu Stability of periodic travelling wave solutions with large spatial periods in reaction-diffusion systems , 1981 .

[35]  T. Amemiya,et al.  Noise-triggered regime shifts in a simple aquatic model , 2009 .

[36]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[37]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[38]  J. Sherratt Unstable wavetrains and chaotic wakes in reaction-diffusion systems of l-Ω type , 1995 .

[39]  Jonathan A. Sherratt On the Evolution of Periodic Plane Waves in Reaction-Diffusion Systems of Lambda-Omega Type , 1994, SIAM J. Appl. Math..

[40]  Stephen K. Scott,et al.  Oscillations, waves, and chaos in chemical kinetics , 1994 .

[41]  Jonathan A. Snerratt Periodic travelling waves in a family of deterministic cellular automata , 1996 .

[42]  M. Scheffer,et al.  IMPLICATIONS OF SPATIAL HETEROGENEITY FOR CATASTROPHIC REGIME SHIFTS IN ECOSYSTEMS , 2005 .

[43]  Grégoire Nicolis,et al.  Bifurcation analysis of reaction-diffusion equations—III. Chemical oscillations , 1976 .

[44]  Andrew M. Liebhold,et al.  Waves of Larch Budmoth Outbreaks in the European Alps , 2002, Science.