Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy

Abstract.A compact open-path optical ammonia detector is developed. A tunable external-cavity diode laser operating at 1.5 μm is used to probe absorptions of ammonia via the cavity-enhanced absorption (CEA) technique. The detector is tested in a climate chamber. The sensitivity and linearity of this system are studied for ammonia and water at atmospheric pressure. A cluster of closely spaced rovibrational overtone and combination band transitions, observed as one broad absorption feature, is used for the detection of ammonia. On these molecular transitions a detection limit of 100 ppb (1 s) is determined. The ammonia measurements are calibrated independently with a chemiluminescence monitor. Compared to other optical open-path detection methods in the 1–2 μm region, the present result shows an improved sensitivity for contactless ammonia detection by over one order of magnitude. Using the same set-up, a detection limit of 100 ppm (1 s) is determined for the detection of water at atmospheric pressure.

[1]  P. Couturier Japan , 1988, The Lancet.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Andrew G. Glen,et al.  APPL , 2001 .