Constraint preserving boundary conditions for the Ideal Newtonian MHD equations
暂无分享,去创建一个
[1] L. Driel-Gesztelyi. An Introduction to Magnetohydrodynamics , 2004 .
[2] Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests , 2005, astro-ph/0503420.
[3] Phillip Colella,et al. A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..
[4] Dinshaw S. Balsara,et al. Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .
[5] Oscar Reula. STRONGLY HYPERBOLIC SYSTEMS IN GENERAL RELATIVITY , 2004 .
[6] Andreas Dedner,et al. Transparent boundary conditions for MHD simulations in stratified atmospheres , 2001 .
[7] H. Kreiss,et al. Time-Dependent Problems and Difference Methods , 1996 .
[8] S. Komissarov,et al. Multi-dimensional Numerical Scheme for Resistive Relativistic MHD , 2007, 0708.0323.
[9] E. Hirschmann,et al. Relativistic MHD and black hole excision: Formulation and initial tests , 2005, gr-qc/0512147.
[10] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[11] David Neilsen,et al. Relativistic MHD with adaptive mesh refinement , 2006, gr-qc/0605102.
[12] Department of Physics,et al. WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics , 2007, gr-qc/0701109.
[13] Axisymmetric simulations of magneto-rotational core collapse : dynamics and gravitational wave signal , 2005, astro-ph/0510184.
[14] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[15] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[16] J. Stone,et al. An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.
[17] Hui Li,et al. CosmoMHD: A Cosmological Magnetohydrodynamics Code , 2006, astro-ph/0611863.
[18] Numerical Simulations of MHD Turbulence in Accretion Disks , 2002, astro-ph/0203353.
[19] P. Olsson. Summation by parts, projections, and stability. II , 1995 .
[20] J Korea,et al. A Multidimensional Code for Isothermal Magnetohydrodynamic Flows in Astrophysics , 1998, astro-ph/9810356.
[21] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[22] Dinshaw S. Balsara,et al. Linearized Formulation of the Riemann Problem for Adiabatic and Isothermal Magnetohydrodynamics , 1998 .
[23] Dinshaw Balsara,et al. A Comparison between Divergence-Cleaning and Staggered-Mesh Formulations for Numerical Magnetohydrodynamics , 2003 .
[24] Quentin F. Stout,et al. An adaptive MHD method for global space weather simulations , 2000 .
[25] Claus-Dieter Munz,et al. Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model , 2000 .
[26] Ian Hutchinson,et al. Principles of Magnetohydrodynamics , 2005 .
[27] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[28] C. Stivers. Class , 2010 .
[29] Dinshaw S. Balsara,et al. Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .
[30] P. Londrillo,et al. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .
[31] Y. Sekiguchi,et al. Magnetohydrodynamics in full general relativity: Formulation and tests , 2005, astro-ph/0507383.
[32] Timothy J. Barth,et al. Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.
[33] S. Pennisi. A covariant and extended model for relativistic magnetofluiddynamics , 1993 .
[34] E. Hirschmann,et al. Relativistic MHD and excision: formulation and initial tests , 2005, gr-qc/0512147.
[35] Charles F. Gammie,et al. HARM: A NUMERICAL SCHEME FOR GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2003 .