Practical Signatures from the Partial Fourier Recovery Problem

We present PASS RS , a variant of the prior PASS and PASS-2 proposals, as a candidate for a practical post-quantum signature scheme. Its hardness is based on the problem of recovering a ring element with small norm from an incomplete description of its Chinese remainder representation. For our particular instantiation, this corresponds to the recovery of a vector with small infinity norm from a limited set of its Fourier coefficients.

[1]  Joseph H. Silverman,et al.  Polynomial Rings and Efficient Public Key Authentication II , 2001 .

[2]  Nicolas Gama,et al.  Lattice Enumeration Using Extreme Pruning , 2010, EUROCRYPT.

[3]  Vadim Lyubashevsky,et al.  Lattice-Based Identification Schemes Secure Under Active Attacks , 2008, Public Key Cryptography.

[4]  Daniele Micciancio,et al.  Generalized Compact Knapsacks Are Collision Resistant , 2006, ICALP.

[5]  Phong Q. Nguyen Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto '97 , 1999, CRYPTO.

[6]  Léo Ducas,et al.  Lattice Signatures and Bimodal Gaussians , 2013, IACR Cryptol. ePrint Arch..

[7]  Michael Schneider,et al.  Extended Lattice Reduction Experiments Using the BKZ Algorithm , 2010, Sicherheit.

[8]  Peter Schwabe,et al.  Software Speed Records for Lattice-Based Signatures , 2013, PQCrypto.

[9]  Nicolas Gama,et al.  Predicting Lattice Reduction , 2008, EUROCRYPT.

[10]  Vadim Lyubashevsky,et al.  Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures , 2009, ASIACRYPT.

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  Vadim Lyubashevsky,et al.  Lattice Signatures Without Trapdoors , 2012, IACR Cryptol. ePrint Arch..

[13]  Phong Q. Nguyen,et al.  BKZ 2.0: Better Lattice Security Estimates , 2011, ASIACRYPT.

[14]  Damien Stehlé,et al.  Analyzing Blockwise Lattice Algorithms Using Dynamical Systems , 2011, CRYPTO.

[15]  Craig Gentry,et al.  Cryptanalysis of the Revised NTRU Signature Scheme , 2002, EUROCRYPT.

[16]  Tim Güneysu,et al.  Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems , 2012, CHES.

[17]  Chris Peikert,et al.  Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices , 2006, TCC.

[18]  Miklós Ajtai,et al.  Generating hard instances of lattice problems (extended abstract) , 1996, STOC '96.

[19]  Craig Gentry,et al.  Trapdoors for hard lattices and new cryptographic constructions , 2008, IACR Cryptol. ePrint Arch..