Hidden quantum gravity in 4D Feynman diagrams: emergence of spin foams

We show how Feynman amplitudes of standard quantum field theory on flat and homogeneous space can naturally be recast as the evaluation of observables for a specific spin foam model, which provides the dynamics for the background geometry. We identify the symmetries of this Feynman graph spin foam model and give the gauge-fixing prescriptions. We also show that the gauge-fixed partition function is invariant under Pachner moves of the triangulation, and thus defines an invariant of four-dimensional manifolds. Finally, we investigate the algebraic structure of the model, and discuss its relation with a quantization of 4D gravity in the limit GN → 0.

[1]  C. Rovelli,et al.  Graviton propagator from Loop Quantum Gravity , 2007 .

[2]  E. Livine,et al.  Group Integral Techniques for the Spinfoam Graviton Propagator , 2006, gr-qc/0608131.

[3]  K. Giesel,et al.  Algebraic quantum gravity (AQG): I. Conceptual setup , 2006, gr-qc/0607099.

[4]  K. Giesel,et al.  Algebraic quantum gravity (AQG): II. Semiclassical analysis , 2006, gr-qc/0607100.

[5]  K. Giesel,et al.  Algebraic quantum gravity (AQG): III. Semiclassical perturbation theory , 2006, gr-qc/0607101.

[6]  J. Kowalski-Glikman,et al.  Particles as Wilson lines of the gravitational field , 2006, gr-qc/0607014.

[7]  L. Freidel,et al.  6j symbols duality relations , 2006, hep-th/0604181.

[8]  A. Baratin,et al.  Hidden quantum gravity in 3D Feynman diagrams , 2006, gr-qc/0604016.

[9]  E. Livine,et al.  3D quantum gravity and effective noncommutative quantum field theory. , 2005, Physical review letters.

[10]  E. Livine,et al.  Effective 3d Quantum Gravity and Non-Commutative Quantum Field Theory , 2005 .

[11]  C. Rovelli Graviton propagator from background-independent quantum gravity. , 2005, Physical review letters.

[12]  L. Freidel Group Field Theory: An Overview , 2005, hep-th/0505016.

[13]  E. Livine,et al.  Ponzano–Regge model revisited: III. Feynman diagrams and effective field theory , 2005, hep-th/0502106.

[14]  J. Barrett Feynman diagrams coupled to three-dimensional quantum gravity , 2005, gr-qc/0502048.

[15]  C. Rovelli,et al.  Particle scattering in loop quantum gravity. , 2005, Physical review letters.

[16]  L. Freidel,et al.  Quantum gravity in terms of topological observables , 2005, hep-th/0501191.

[17]  J. Barrett,et al.  CATEGORICAL REPRESENTATIONS OF CATEGORICAL GROUPS , 2004, math/0407463.

[18]  A. Ashtekar,et al.  Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.

[19]  L. Crane,et al.  2-categorical Poincare Representations and State Sum Applications , 2003, math/0306440.

[20]  Alejandro Perez Spin foam models for quantum gravity , 2003, gr-qc/0301113.

[21]  I. Korepanov Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: III. Moves 1 ↔ 5 and Related Structures , 2002, math/0211167.

[22]  I. Korepanov Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves 2↔4 , 2002, math/0211166.

[23]  I. Korepanov Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves 3→3 , 2002, math/0211165.

[24]  D. Oriti Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity , 2001, gr-qc/0106091.

[25]  K. Krasnov,et al.  Simple spin networks as Feynman graphs , 1999, hep-th/9903192.

[26]  C. Schubert,et al.  World Line Path Integrals as a Calculational Tool in Quantum Field Theory , 1998, hep-th/9810161.

[27]  K. Krasnov,et al.  Spin Foam Models and the Classical Action Principle , 1998, hep-th/9807092.

[28]  M. Mackaay Spherical 2-Categories and 4-Manifold Invariants☆ , 1998, math/9805030.

[29]  John C. Baez,et al.  Spin foam models , 1997, gr-qc/9709052.

[30]  L. Crane,et al.  Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.

[31]  Torre,et al.  Gravitational observables and local symmetries. , 1993, Physical review. D, Particles and fields.

[32]  Z. Bern String-Based Perturbative Methods for Gauge Theories , 1993, hep-ph/9304249.

[33]  I. Batalin,et al.  Quantization of Gauge Theories with Linearly Dependent Generators , 1983 .

[34]  T. Regge General relativity without coordinates , 1961 .

[35]  P. Motylinski,et al.  Preprint typeset in JHEP style.- PAPER VERSION Cavendish–HEP–05/24 , 2005 .

[36]  Alexander M. Polyakov,et al.  Gauge Fields And Strings , 1987 .