Hidden quantum gravity in 4D Feynman diagrams: emergence of spin foams
暂无分享,去创建一个
[1] C. Rovelli,et al. Graviton propagator from Loop Quantum Gravity , 2007 .
[2] E. Livine,et al. Group Integral Techniques for the Spinfoam Graviton Propagator , 2006, gr-qc/0608131.
[3] K. Giesel,et al. Algebraic quantum gravity (AQG): I. Conceptual setup , 2006, gr-qc/0607099.
[4] K. Giesel,et al. Algebraic quantum gravity (AQG): II. Semiclassical analysis , 2006, gr-qc/0607100.
[5] K. Giesel,et al. Algebraic quantum gravity (AQG): III. Semiclassical perturbation theory , 2006, gr-qc/0607101.
[6] J. Kowalski-Glikman,et al. Particles as Wilson lines of the gravitational field , 2006, gr-qc/0607014.
[7] L. Freidel,et al. 6j symbols duality relations , 2006, hep-th/0604181.
[8] A. Baratin,et al. Hidden quantum gravity in 3D Feynman diagrams , 2006, gr-qc/0604016.
[9] E. Livine,et al. 3D quantum gravity and effective noncommutative quantum field theory. , 2005, Physical review letters.
[10] E. Livine,et al. Effective 3d Quantum Gravity and Non-Commutative Quantum Field Theory , 2005 .
[11] C. Rovelli. Graviton propagator from background-independent quantum gravity. , 2005, Physical review letters.
[12] L. Freidel. Group Field Theory: An Overview , 2005, hep-th/0505016.
[13] E. Livine,et al. Ponzano–Regge model revisited: III. Feynman diagrams and effective field theory , 2005, hep-th/0502106.
[14] J. Barrett. Feynman diagrams coupled to three-dimensional quantum gravity , 2005, gr-qc/0502048.
[15] C. Rovelli,et al. Particle scattering in loop quantum gravity. , 2005, Physical review letters.
[16] L. Freidel,et al. Quantum gravity in terms of topological observables , 2005, hep-th/0501191.
[17] J. Barrett,et al. CATEGORICAL REPRESENTATIONS OF CATEGORICAL GROUPS , 2004, math/0407463.
[18] A. Ashtekar,et al. Background independent quantum gravity: A Status report , 2004, gr-qc/0404018.
[19] L. Crane,et al. 2-categorical Poincare Representations and State Sum Applications , 2003, math/0306440.
[20] Alejandro Perez. Spin foam models for quantum gravity , 2003, gr-qc/0301113.
[21] I. Korepanov. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: III. Moves 1 ↔ 5 and Related Structures , 2002, math/0211167.
[22] I. Korepanov. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: II. An Algebraic Complex and Moves 2↔4 , 2002, math/0211166.
[23] I. Korepanov. Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves 3→3 , 2002, math/0211165.
[24] D. Oriti. Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity , 2001, gr-qc/0106091.
[25] K. Krasnov,et al. Simple spin networks as Feynman graphs , 1999, hep-th/9903192.
[26] C. Schubert,et al. World Line Path Integrals as a Calculational Tool in Quantum Field Theory , 1998, hep-th/9810161.
[27] K. Krasnov,et al. Spin Foam Models and the Classical Action Principle , 1998, hep-th/9807092.
[28] M. Mackaay. Spherical 2-Categories and 4-Manifold Invariants☆ , 1998, math/9805030.
[29] John C. Baez,et al. Spin foam models , 1997, gr-qc/9709052.
[30] L. Crane,et al. Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.
[31] Torre,et al. Gravitational observables and local symmetries. , 1993, Physical review. D, Particles and fields.
[32] Z. Bern. String-Based Perturbative Methods for Gauge Theories , 1993, hep-ph/9304249.
[33] I. Batalin,et al. Quantization of Gauge Theories with Linearly Dependent Generators , 1983 .
[34] T. Regge. General relativity without coordinates , 1961 .
[35] P. Motylinski,et al. Preprint typeset in JHEP style.- PAPER VERSION Cavendish–HEP–05/24 , 2005 .
[36] Alexander M. Polyakov,et al. Gauge Fields And Strings , 1987 .