An intrinsic mechanism of corticogenesis from embryonic stem cells

The cerebral cortex develops through the coordinated generation of dozens of neuronal subtypes, but the mechanisms involved remain unclear. Here we show that mouse embryonic stem cells, cultured without any morphogen but in the presence of a sonic hedgehog inhibitor, recapitulate in vitro the major milestones of cortical development, leading to the sequential generation of a diverse repertoire of neurons that display most salient features of genuine cortical pyramidal neurons. When grafted into the cerebral cortex, these neurons develop patterns of axonal projections corresponding to a wide range of cortical layers, but also to highly specific cortical areas, in particular visual and limbic areas, thereby demonstrating that the identity of a cortical area can be specified without any influence from the brain. The discovery of intrinsic corticogenesis sheds new light on the mechanisms of neuronal specification, and opens new avenues for the modelling and treatment of brain diseases.

[1]  M. Götz,et al.  Cortical development: the art of generating cell diversity , 2005, Development.

[2]  M. Roger,et al.  Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons , 2007, Nature Neuroscience.

[3]  P. Levitt,et al.  Age-dependent specification of the corticocortical connections of cerebral grafts , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  J. Olavarria,et al.  Beyond Laminar Fate: Toward a Molecular Classification of Cortical Projection/Pyramidal Neurons , 2003, Developmental Neuroscience.

[5]  C. Economo,et al.  Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex , 2008 .

[6]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[7]  Jussi Taipale,et al.  Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. , 2002, Genes & development.

[8]  Dante S. Bortone,et al.  Phosphorylation of Neurogenin2 Specifies the Migration Properties and the Dendritic Morphology of Pyramidal Neurons in the Neocortex , 2005, Neuron.

[9]  S. Goderie,et al.  Timing of CNS Cell Generation A Programmed Sequence of Neuron and Glial Cell Production from Isolated Murine Cortical Stem Cells , 2000, Neuron.

[10]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[11]  R. Nieuwenhuys The neocortex , 1994, Anatomy and Embryology.

[12]  Anirvan Ghosh,et al.  Semaphorin 3A is a chemoattractant for cortical apical dendrites , 2000, Nature.

[13]  Oliver Brüstle,et al.  Retinoic acid induction of ES-cell-derived neurons: the radial glia connection , 2005, Trends in Neurosciences.

[14]  R B Masterton,et al.  Somatosensory and motor representations in cerebral cortex of a primitive mammal (Monodelphis domestica): A window into the early evolution of sensorimotor cortex , 2000, The Journal of comparative neurology.

[15]  F. Polleux,et al.  Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between , 2004, Trends in Neurosciences.

[16]  S. Mcconnell,et al.  Cell cycle dependence of laminar determination in developing neocortex. , 1992, Science.

[17]  M. Verity,et al.  8 – Nervous System , 1995 .

[18]  M. Roger,et al.  Neocortical Grafting to Newborn and Adult Rats: Developmental, Anatomical and Functional Aspects , 1998, Advances in Anatomy Embryology and Cell Biology.

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  Shen-Ju Chou,et al.  COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas , 2007, Nature Neuroscience.

[21]  C. Schuurmans,et al.  Molecular mechanisms underlying cell fate specification in the developing telencephalon , 2002, Current Opinion in Neurobiology.

[22]  Ali H. Brivanlou,et al.  Neural induction, the default model and embryonic stem cells , 2002, Nature Reviews Neuroscience.

[23]  V. Staiger,et al.  Differentiation of mouse embryonic stem cells into a defined neuronal lineage , 2004, Nature Neuroscience.

[24]  R. McKay,et al.  Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells , 2000, Nature Biotechnology.

[25]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[26]  S. Mcconnell,et al.  Restriction of Late Cerebral Cortical Progenitors to an Upper-Layer Fate , 1996, Neuron.

[27]  D. van der Kooy,et al.  Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences , 2006, The Journal of cell biology.

[28]  K. Mizuseki,et al.  Directed differentiation of telencephalic precursors from embryonic stem cells , 2005, Nature Neuroscience.

[29]  Q. Deng,et al.  Identification of Intrinsic Determinants of Midbrain Dopamine Neurons , 2006, Cell.

[30]  G. Paxinos The Rat nervous system , 1985 .

[31]  Marius Wernig,et al.  Tau EGFP embryonic stem cells: An efficient tool for neuronal lineage selection and transplantation , 2002, Journal of neuroscience research.

[32]  Stephen W. Wilson,et al.  Early steps in the development of the forebrain. , 2004, Developmental cell.

[33]  S. Mcconnell,et al.  Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap , 2005, Development.

[34]  M. Roger,et al.  Topographic distribution of efferent fibers originating from homotopic or heterotopic transplants: heterotopically transplanted neurons retain some of the developmental characteristics corresponding to their site of origin. , 1994, Brain research. Developmental brain research.

[35]  H. Wichterle,et al.  Directed Differentiation of Embryonic Stem Cells into Motor Neurons , 2002, Cell.

[36]  L. Puelles Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[38]  Henry Kennedy,et al.  Cell-cycle control and cortical development , 2007, Nature Reviews Neuroscience.

[39]  T. Jessell,et al.  Sonic hedgehog signaling at gastrula stages specifies ventral telencephalic cells in the chick embryo. , 2000, Development.

[40]  Austin G Smith,et al.  Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture , 2003, Nature Biotechnology.

[41]  Nature of articles , 2022, SAIEE Africa Research Journal.

[42]  Takayoshi Inoue,et al.  Fate mapping of the mouse prosencephalic neural plate. , 2000, Developmental biology.

[43]  E. Grove,et al.  Area and layer patterning in the developing cerebral cortex , 2006, Current Opinion in Neurobiology.

[44]  R. Hevner From radial glia to pyramidal-projection neuron , 2006, Molecular Neurobiology.

[45]  John T. Dimos,et al.  The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells , 2006, Nature Neuroscience.

[46]  M. Roger,et al.  Stage of specification of the spinal cord and tectal projections from cortical grafts , 2000, The European journal of neuroscience.

[47]  A. Kriegstein,et al.  Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases , 2004, Nature Neuroscience.

[48]  O. Britanova,et al.  Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex , 2008, Neuron.