Local Higher-Order Statistics (LHS) for Texture Categorization and Facial Analysis

This paper proposes a new image representation for texture categorization and facial analysis, relying on the use of higher-order local differential statistics as features. In contrast with models based on the global structure of textures and faces, it has been shown recently that small local pixel pattern distributions can be highly discriminative. Motivated by such works, the proposed model employs higher-order statistics of local non-binarized pixel patterns for the image description. Hence, in addition to being remarkably simple, it requires neither any user specified quantization of the space (of pixel patterns) nor any heuristics for discarding low occupancy volumes of the space. This leads to a more expressive representation which, when combined with discriminative SVM classifier, consistently achieves state-of-the-art performance on challenging texture and facial analysis datasets outperforming contemporary methods (with similar powerful classifiers).

[1]  Erkki Oja,et al.  Reduced Multidimensional Co-Occurrence Histograms in Texture Classification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Song-Chun Zhu Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998 .

[3]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[4]  Michael J. Lyons,et al.  Coding facial expressions with Gabor wavelets , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[5]  Kristin J. Dana,et al.  Compact representation of bidirectional texture functions , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Andrew Zisserman,et al.  Texture classification: are filter banks necessary? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[9]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[10]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[11]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[12]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[13]  M. Pietikäinen,et al.  FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS AND LINEAR PROGRAMMING , 2004 .

[14]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[15]  M. Pietikäinen,et al.  Facial Expression Recognition with Local Binary Patterns and Linear Programming 1 , 2005 .

[16]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[18]  Shu Liao,et al.  Facial Expression Recognition using Advanced Local Binary Patterns, Tsallis Entropies and Global Appearance Features , 2006, 2006 International Conference on Image Processing.

[19]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, CVPR Workshops.

[20]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[21]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[22]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[23]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Michael H. F. Wilkinson,et al.  Connected Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-Scale Images , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[26]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[27]  Yong Xu,et al.  Viewpoint Invariant Texture Description Using Fractal Analysis , 2009, International Journal of Computer Vision.

[28]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[29]  Tal Hassner,et al.  Similarity Scores Based on Background Samples , 2009, ACCV.

[30]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[31]  Javier Ruiz-del-Solar,et al.  Recognition of Faces in Unconstrained Environments: A Comparative Study , 2009, EURASIP J. Adv. Signal Process..

[32]  Lewis D. Griffin,et al.  Using Basic Image Features for Texture Classification , 2010, International Journal of Computer Vision.

[33]  Paul W. Fieguth,et al.  Compressed Sensing for Robust Texture Classification , 2010, ACCV.

[34]  Hongbin Zha,et al.  Computer Vision - ACCV 2009, 9th Asian Conference on Computer Vision, Xi'an, China, September 23-27, 2009, Revised Selected Papers, Part III , 2010, Asian Conference on Computer Vision.

[35]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[36]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[37]  Radim Sára,et al.  A Weak Structure Model for Regular Pattern Recognition Applied to Facade Images , 2010, ACCV.

[38]  Andrew Zisserman,et al.  Efficient additive kernels via explicit feature maps , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[40]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[41]  Yong Xu,et al.  A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Matti Pietikäinen,et al.  Computer Vision Using Local Binary Patterns , 2011, Computational Imaging and Vision.

[43]  Peyman Milanfar,et al.  Face Verification Using the LARK Representation , 2011, IEEE Transactions on Information Forensics and Security.