Inter-channel Conversion between Population-/Coherence-channel Dictates Thermal Transport in MAPbI3 Crystals

[1]  I. Chang,et al.  Asymmetrical carbon nanotubes exhibit opposing thermal rectification behaviors under different heat baths , 2022, International Journal of Heat and Mass Transfer.

[2]  Xiaodong Li,et al.  Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells , 2022, Science.

[3]  Jia Zhu,et al.  All-perovskite tandem solar cells with improved grain surface passivation , 2022, Nature.

[4]  M. Nomura,et al.  Heat Conduction Theory Including Phonon Coherence. , 2021, Physical review letters.

[5]  Steven J. Plimpton,et al.  LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales , 2021, Computer Physics Communications.

[6]  Tarek A. Kandiel,et al.  AMBIENT-ENVIRONMENT processed perovskite solar cells: A review , 2021, Materials Today Physics.

[7]  X. Crispin,et al.  Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. , 2021, Chemical reviews.

[8]  Yue Chen,et al.  Nonperturbative phonon scatterings and the two-channel thermal transport in Tl3VSe4 , 2021, Physical Review B.

[9]  Dawei Tang,et al.  The effective regulation of nanotwinning on the multichannel thermal transport in hybrid organic–inorganic halide perovskite , 2021 .

[10]  Ankit Jain Multichannel thermal transport in crystalline Tl3VSe4 , 2020, Physical Review B.

[11]  G. J. Snyder,et al.  Uncovering design principles for amorphous-like heat conduction using two-channel lattice dynamics , 2020, Materials Today Physics.

[12]  L. Daemen,et al.  Giant isotope effect on phonon dispersion and thermal conductivity in methylammonium lead iodide , 2020, Science Advances.

[13]  Tianli Feng,et al.  Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals , 2020, Nature Communications.

[14]  D. Baran,et al.  Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity , 2020, Advanced science.

[15]  V. Ozoliņš,et al.  Particlelike Phonon Propagation Dominates Ultralow Lattice Thermal Conductivity in Crystalline Tl_{3}VSe_{4}. , 2020, Physical review letters.

[16]  T. Ala‐Nissila,et al.  Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. , 2019, The Journal of chemical physics.

[17]  J. Shiomi,et al.  Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction , 2019, Materials Today Physics.

[18]  T. Zhu,et al.  Mixed phononic and non-phononic transport in hybrid lead halide perovskites: glass-crystal duality, dynamical disorder, and anharmonicity , 2019, Energy & Environmental Science.

[19]  N. Marzari,et al.  Unified theory of thermal transport in crystals and glasses , 2019, Nature Physics.

[20]  A. McGaughey,et al.  Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation , 2019, Journal of Applied Physics.

[21]  D. Broido,et al.  Unified first-principles theory of thermal properties of insulators , 2018, Physical Review B.

[22]  Yiping Wang,et al.  Ultralow Thermal Conductivity and Ultrahigh Thermal Expansion of Single-Crystal Organic–Inorganic Hybrid Perovskite CH3NH3PbX3 (X = Cl, Br, I) , 2018, The Journal of Physical Chemistry C.

[23]  D. Parker,et al.  Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4 , 2018, Science.

[24]  M. Kanatzidis,et al.  Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. , 2018, ACS nano.

[25]  R. Heiderhoff,et al.  Thermal Conductivity of Methylammonium Lead Halide Perovskite Single Crystals and Thin Films: A Comparative Study , 2017 .

[26]  P. Kim,et al.  Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites. , 2017, Nano letters.

[27]  P. Chand,et al.  Ferroelectrics: Principles and Applications , 2017 .

[28]  Heejae Lee,et al.  Structural Instabilities Related to Highly Anharmonic Phonons in Halide Perovskites. , 2017, The journal of physical chemistry letters.

[29]  K. Biswas,et al.  Preferential CH3NH3+ Alignment and Octahedral Tilting Affect Charge Localization in Cubic Phase CH3NH3PbI3 , 2017 .

[30]  Lili Wang,et al.  Thermal Conductivity of CH3NH3PbI3 and CsPbI3: Measuring the Effect of the Methylammonium Ion on Phonon Scattering , 2017 .

[31]  A. McGaughey,et al.  Orientational order controls crystalline and amorphous thermal transport in superatomic crystals. , 2017, Nature materials.

[32]  Jia-yue Yang,et al.  Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells , 2016 .

[33]  Lucy D. Whalley,et al.  Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theory , 2016, 1609.00825.

[34]  L. Colombo,et al.  Tuning the thermal conductivity of methylammonium lead halide by the molecular substructure. , 2016, Physical chemistry chemical physics : PCCP.

[35]  A. McGaughey,et al.  Lattice dynamics and the nature of structural transitions in organolead halide perovskites , 2016, 1608.05411.

[36]  Brookhaven National Laboratory,et al.  Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite , 2016, 1606.09267.

[37]  A. McGaughey,et al.  Vibrational mean free paths and thermal conductivity of amorphous silicon from non-equilibrium molecular dynamics simulations , 2016, 1605.08925.

[38]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[39]  Tianli Feng,et al.  Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids , 2015, 1510.00706.

[40]  Ling Wang,et al.  Stimuli‐Directing Self‐Organized 3D Liquid‐Crystalline Nanostructures: From Materials Design to Photonic Applications , 2016 .

[41]  P. Delugas,et al.  Methylammonium Rotational Dynamics in Lead Halide Perovskite by Classical Molecular Dynamics: The Role of Temperature , 2015 .

[42]  Nuo Yang,et al.  Thermoelectric Properties of Nanoscale three dimensional Si Phononic Crystal , 2014, 1410.8193.

[43]  Endre Horváth,et al.  Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[44]  Man Li,et al.  Molecular dynamics study of thermal transport in amorphous silicon carbide thin film , 2014 .

[45]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[46]  A. McGaughey,et al.  Coupling of Organic and Inorganic Vibrational States and Their Thermal Transport in Nanocrystal Arrays , 2014 .

[47]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[48]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[49]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[50]  Simon R. Phillpot,et al.  Evaluation of Computational Techniques for Solving the Boltzmann Transport Equation for Lattice Thermal Conductivity Calculations , 2010 .

[51]  A. McGaughey,et al.  Size effects in molecular dynamics thermal conductivity predictions , 2010 .

[52]  A. McGaughey,et al.  Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations , 2009 .

[53]  M I Katsnelson,et al.  Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. , 2008, Physical review letters.

[54]  Simon J L Billinge,et al.  Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. , 2004, Chemical communications.

[55]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[56]  E. Venuti,et al.  Quasiharmonic lattice-dynamics and molecular-dynamics calculations for the Lennard-Jones solids , 1998, cond-mat/9805048.

[57]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .