Safety properties of liquid state soft pack high power batteries with carbon-coated LiFePO4/graphite electrodes

[1]  M. Mastragostino,et al.  MW-assisted synthesis of LiFePO4 for high power applications , 2008 .

[2]  Fei Gao,et al.  Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method , 2007 .

[3]  Yong‐Mook Kang,et al.  Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating , 2007 .

[4]  She-huang Wu,et al.  Improving electrochemical properties of lithium iron phosphate by addition of vanadium , 2007 .

[5]  H. Jang,et al.  Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black , 2006 .

[6]  Yasuyuki. Shigematsu,et al.  Thermal Behavior of a C ∕ LiCoO2 Cell, Its Components, and Their Combinations and the Effects of Electrolyte Additives , 2006 .

[7]  Raouf O. Loutfy,et al.  Overcharge studies of carbon fiber composite-based lithium-ion cells , 2006 .

[8]  Liquan Chen,et al.  Overcharge investigation of lithium-ion polymer batteries , 2006 .

[9]  Ho Jang,et al.  Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries , 2006 .

[10]  Ru-Shi Liu,et al.  A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries , 2006 .

[11]  Donghan Kim,et al.  Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties , 2006 .

[12]  Jae-won Lee,et al.  Synthesis of LiFePO4 micro and nanoparticles in supercritical water , 2006 .

[13]  J. Owen,et al.  A Solution–Precursor Synthesis of Carbon-Coated LiFePO4 for Li-Ion Cells , 2005 .

[14]  Bruno Scrosati,et al.  A High-Rate, Nanocomposite LiFePO4 ∕ Carbon Cathode , 2005 .

[15]  Yuichi Sato,et al.  Overcharge reaction of lithium-ion batteries , 2005 .

[16]  Akiko Nakashima,et al.  Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process , 2005 .

[17]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[18]  Siqi Shi,et al.  Improving the rate performance of LiFePO4 by Fe-site doping , 2005 .

[19]  J. Dahn,et al.  Effects of solvents and salts on the thermal stability of LiC6 , 2004 .

[20]  Pier Paolo Prosini,et al.  Long-term cyclability of nanostructured LiFePO4 , 2003 .

[21]  J. Yamaki,et al.  Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode , 2003 .

[22]  J. Yamaki,et al.  Thermal stability of graphite anode with electrolyte in lithium-ion cells , 2002 .

[23]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[24]  D. D. MacNeil,et al.  A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes , 2002 .

[25]  John O. Thomas,et al.  Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study , 2000 .

[26]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[27]  Junwei Jiang,et al.  ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes , 2004 .

[28]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .