Rotational excitation of formaldehyde by hydrogen molecules: ortho-H_2CO at low temperature

Aims: Rate coefficients for the rotational excitation of the ten lowest levels of ortho-H_2CO by collisions with H2 molecules are computed for kinetic temperatures in the range 5-100 K. Methods: Cross sections are obtained from extensive, fully converged, quantum-mechanical scattering calculations using a highly accurate potential energy surface computed at the CCSD(T) level with a basis set extrapolation procedure. Scattering calculations are carried out for H2 molecules in both para and ortho rotational levels. Results: The present rates are shown to differ significantly from those available in the literature. Moreover, the strength of propensity rules is found to depend on the para/ortho form of H2. Radiative transfer modeling also shows that the new rates have a significant impact on H_2CO emission line fluxes and that they should be adopted in any detailed radiative transfer model of ortho-H_2CO in cold environments (T ⪉ 30 K). This paper is dedicated to the memory of our friend and colleague, Pierre Valiron, who died on 31 August 2008. Table of rate coefficients is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/687

[1]  J. Noga,et al.  R12-calibrated H2O-H2 interaction: full dimensional and vibrationally averaged potential energy surfaces. , 2008, The Journal of chemical physics.

[2]  K. Menten,et al.  Formaldehyde Densitometry of Starburst Galaxies , 2007, 0710.2115.

[3]  M. Dubernet,et al.  Quasi-classical rate coefficient calculations for the rotational (de)excitation of H2O by H2 , 2007, 0708.0345.

[4]  N. Feautrier,et al.  Rotationally inelastic collisions of SO(X3Sigma-) with H2: potential energy surface and rate coefficients for excitation by para-H2 at low temperature. , 2007, The Journal of chemical physics.

[5]  J. Noga,et al.  Influence of a new potential energy surface on the rotational (de)excitation of H2O by H2 at low temperature , 2006 .

[6]  L. Wiesenfeld,et al.  Rotational excitation of HC3N by H2 and He at low temperatures , 2006, physics/0611258.

[7]  J. Noga,et al.  On the role of high excitations in the intermolecular potential of H2–CO , 2006 .

[8]  J. Pety,et al.  Comparative chemistry of diffuse clouds V. Ammonia and formaldehyde , 2006 .

[9]  P. Jankowski,et al.  Improved low-temperature rate constants for rotational excitation of CO by H 2 , 2006, astro-ph/0601384.

[10]  K. L. Baluja,et al.  Electron-impact study of formaldehyde using the R-matrix method , 2005 .

[11]  P. Jankowski,et al.  A new ab initio interaction energy surface and high-resolution spectra of the H2-CO van der Waals complex. , 2005, The Journal of chemical physics.

[12]  J. Tennyson,et al.  A full nine-dimensional potential-energy surface for hydrogen molecule-water collisions. , 2005, The Journal of chemical physics.

[13]  N. Biver,et al.  Origin of the formaldehyde (H2CO) extended source in comet C/1995 O1 (Hale-Bopp) , 2004 .

[14]  L. Wiesenfeld,et al.  Ambiguities in the semiclassical assignment of the asymmetric rotor rotational quantum numbers. , 2004, The Journal of chemical physics.

[15]  E. Caux,et al.  Theoretical H2CO emission from protostellar envelopes , 2003, astro-ph/0506144.

[16]  A. Tielens,et al.  The H2CO abundance in the inner warm regions of low mass protostellar envelopes , 2003, astro-ph/0310536.

[17]  D. Teyssier,et al.  The Hot Core around the Low-Mass Protostar IRAS 16293–2422: Scoundrels Rule! , 2003 .

[18]  Martyn D. Wheeler,et al.  A new potential energy surface for He–H2CO , 2003 .

[19]  L. Loinard,et al.  CO Depletion and Deuterium Fractionation in Prestellar Cores , 2003, astro-ph/0301651.

[20]  M. Dubernet,et al.  Collisional excitation rates of H2O with H2. I. Pure rotational excitation rates with para-H2 at very low temperature , 2002 .

[21]  H. Liszt,et al.  Comparative chemistry of diffuse clouds. IV: CH , 2002, astro-ph/0206119.

[22]  A. Tielens,et al.  Extended D2CO emission: The smoking gun of grain surface-chemistry , 2001 .

[23]  F. D. De Lucia,et al.  Helium and Hydrogen Induced Rotational Relaxation of H2CO Observed at Temperatures of the Interstellar Medium , 2000 .

[24]  S. Green,et al.  Collisional Excitation of H 2O by H 2 Molecules , 1996 .

[25]  Gisbert Winnewisser,et al.  The Ground State Rotational Spectrum of Formaldehyde , 1996 .

[26]  K. Szalewicz,et al.  On the effectiveness of monomer‐, dimer‐, and bond‐centered basis functions in calculations of intermolecular interaction energies , 1995 .

[27]  G. Blake,et al.  Molecular Abundances and Low-Mass Star Formation. II. Organic and Deuterated Species toward IRAS 16293-2422 , 1995 .

[28]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[29]  A. D. McLean,et al.  Anisotropic rigid rotor potential energy function for H2O–H2 , 1994 .

[30]  J. Mangum,et al.  Formaldehyde as a probe of physical conditions in dense molecular clouds , 1993 .

[31]  S. Green Collisional excitation of formaldehyde in 'hot' interstellar molecular regions , 1991 .

[32]  D. Clouthier,et al.  The Spectroscopy of Formaldehyde and Thioformaldehyde , 1983 .

[33]  J. Krolik,et al.  Hydrogen emission-line spectra in quasars and active galactic nuclei , 1978 .

[34]  W. A. Lester,et al.  Collisional excitation of interstellar formaldehyde , 1978 .

[35]  W. Lester,et al.  Coupled‐channel study of rotational excitation of a rigid asymmetric top by atom impact: (H2CO,He) at interstellar temperatures , 1976 .

[36]  W. Lester,et al.  Effect of electron correlation on the H2CO‐He interaction potential , 1975 .

[37]  W. Miller,et al.  Cooling of the 6-centimeter and 2-centimeter doublets of interstellar H$sub 2$CO by collision: an accurate quantum-mechanical calculation , 1975 .

[38]  D. Lester,et al.  Search for polarimetric variations in the close binary GK Cephei , 1975 .

[39]  J. L. Duncan,et al.  The ground-state average and equilibrium structures of formaldehyde and ethylene , 1974 .

[40]  W. Miller,et al.  Semiclassical treatment of atom‐asymmetric rotor collisions; rotational excitation of formaldehyde at low energies , 1974 .

[41]  C. Townes,et al.  A pumping mechanism for anomalous microwave absorption in formaldehyde in interstellar space. , 1969 .

[42]  J. Tennyson,et al.  Electron-impact rotational excitation of water , 2004 .

[43]  D. Buhl,et al.  MICROWAVE DETECTION OF INTERSTELLAR FORMALDEHYDE. , 1969 .