Reverse engineering the genotype–phenotype map with natural genetic variation

The genetic variation that occurs naturally in a population is a powerful resource for studying how genotype affects phenotype. Each allele is a perturbation of the biological system, and genetic crosses, through the processes of recombination and segregation, randomize the distribution of these alleles among the progeny of a cross. The randomized genetic perturbations affect traits directly and indirectly, and the similarities and differences between traits in their responses to common perturbations allow inferences about whether variation in a trait is a cause of a phenotype (such as disease) or whether the trait variation is, instead, an effect of that phenotype. It is then possible to use this information about causes and effects to build models of probabilistic 'causal networks'. These networks are beginning to define the outlines of the 'genotype–phenotype map'.

[1]  Yan Cui,et al.  Inferring gene transcriptional modulatory relations: a genetical genomics approach. , 2005, Human molecular genetics.

[2]  Rachel B. Brem,et al.  Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks , 2008, Nature Genetics.

[3]  Alberto de la Fuente,et al.  Discovery of meaningful associations in genomic data using partial correlation coefficients , 2004, Bioinform..

[4]  Olga G. Troyanskaya,et al.  Nearest Neighbor Networks: clustering expression data based on gene neighborhoods , 2007, BMC Bioinformatics.

[5]  Elias Chaibub Neto,et al.  Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling , 2008, PLoS genetics.

[6]  Rory A. Fisher,et al.  The Arrangement of Field Experiments , 1992 .

[7]  G. Churchill,et al.  Evidence of a Large-Scale Functional Organization of Mammalian Chromosomes , 2005, PLoS biology.

[8]  Nengjun Yi,et al.  The Collaborative Cross, a community resource for the genetic analysis of complex traits , 2004, Nature Genetics.

[9]  L. Kruglyak,et al.  Genetics of global gene expression , 2006, Nature Reviews Genetics.

[10]  John D. Storey,et al.  Mapping the Genetic Architecture of Gene Expression in Human Liver , 2008, PLoS biology.

[11]  E. Schadt,et al.  Genetic and Genomic Analysis of a Fat Mass Trait with Complex Inheritance Reveals Marked Sex Specificity , 2006, PLoS genetics.

[12]  T. Ohta Origin of the neutral and nearly neutral theories of evolution , 2003, Journal of Biosciences.

[13]  Yonina C. Eldar,et al.  eQED: an efficient method for interpreting eQTL associations using protein networks , 2008, Molecular systems biology.

[14]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[15]  Ritsert C. Jansen,et al.  Studying complex biological systems using multifactorial perturbation , 2003, Nature Reviews Genetics.

[16]  N. Bing,et al.  Genetical Genomics Analysis of a Yeast Segregant Population for Transcription Network Inference , 2005, Genetics.

[17]  J. Akey,et al.  The Evolution of Gene Expression QTL in Saccharomyces cerevisiae , 2007, PloS one.

[18]  J. Zhu,et al.  An integrative genomics approach to the reconstruction of gene networks in segregating populations , 2004, Cytogenetic and Genome Research.

[19]  L. Almasy,et al.  Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes , 2007, Nature Genetics.

[20]  Gary A. Churchill,et al.  The Genetics of Gene Expression , 2006, Mammalian Genome.

[21]  Robert W. Williams,et al.  Methodological aspects of the genetic dissection of gene expression , 2005, Bioinform..

[22]  Rachel B. Brem,et al.  Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors , 2003, Nature Genetics.

[23]  G. Churchill,et al.  Applying Gene Expression, Proteomics and Single-Nucleotide Polymorphism Analysis for Complex Trait Gene Identification , 2008, Genetics.

[24]  N. Barton,et al.  Multifactorial genetics: Understanding quantitative genetic variation , 2002, Nature Reviews Genetics.

[25]  S. Horvath,et al.  Variations in DNA elucidate molecular networks that cause disease , 2008, Nature.

[26]  S. Horvath,et al.  Evidence for anti-Burkitt tumour globulins in Burkitt tumour patients and healthy individuals. , 1967, British Journal of Cancer.

[27]  E. Plahte,et al.  Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. , 2000, Genetics.

[28]  Stig W Omholt,et al.  Statistical Epistasis Is a Generic Feature of Gene Regulatory Networks , 2007, Genetics.

[29]  R. Doerge,et al.  Global eQTL Mapping Reveals the Complex Genetic Architecture of Transcript-Level Variation in Arabidopsis , 2007, Genetics.

[30]  A. G. de la Fuente,et al.  Gene Network Inference via Structural Equation Modeling in Genetical Genomics Experiments , 2008, Genetics.

[31]  J. Stamatoyannopoulos,et al.  The genomics of gene expression. , 2004, Genomics.

[32]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[33]  C. Molony,et al.  Genetic analysis of genome-wide variation in human gene expression , 2004, Nature.

[34]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[35]  J. Lamb,et al.  Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes , 2006, Journal of neurochemistry.

[36]  Eric E Schadt,et al.  Cis-acting expression quantitative trait loci in mice. , 2005, Genome research.

[37]  J. Castle,et al.  An integrative genomics approach to infer causal associations between gene expression and disease , 2005, Nature Genetics.

[38]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Keith Shockley,et al.  Structural Model Analysis of Multiple Quantitative Traits , 2006, PLoS genetics.

[40]  Paul M. Magwene,et al.  Estimating genomic coexpression networks using first-order conditional independence , 2004, Genome Biology.

[41]  J. Nap,et al.  Genetical genomics : the added value from segregation , 2001 .

[42]  Susan Oyama The Ontogeny of Information: Developmental Systems and Evolution , 2000 .

[43]  David R Goodlett,et al.  Genetic basis of proteome variation in yeast , 2007, Nature Genetics.

[44]  John D. Storey,et al.  Multiple Locus Linkage Analysis of Genomewide Expression in Yeast , 2005, PLoS biology.

[45]  Jingyuan Fu,et al.  Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans , 2006, PLoS genetics.

[46]  Andrew I Su,et al.  Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics' , 2005, Nature Genetics.

[47]  D. Nott,et al.  Genetic dissection of gene regulation in multiple mouse tissues , 2006, Mammalian Genome.

[48]  L. Kruglyak,et al.  Gene–Environment Interaction in Yeast Gene Expression , 2008, PLoS biology.

[49]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[50]  C. Kendziorski,et al.  Statistical Methods for Expression Quantitative Trait Loci (eQTL) Mapping , 2006, Biometrics.

[51]  Eric E. Schadt,et al.  Moving toward a system genetics view of disease , 2007, Mammalian Genome.

[52]  Rudi Alberts,et al.  A Statistical Multiprobe Model for Analyzing cis and trans Genes in Genetical Genomics Experiments With Short-Oligonucleotide Arrays , 2005, Genetics.

[53]  John D. Storey,et al.  Harnessing naturally randomized transcription to infer regulatory relationships among genes , 2007, Genome Biology.

[54]  Jun Zhu,et al.  Increasing the Power to Detect Causal Associations by Combining Genotypic and Expression Data in Segregating Populations , 2007, PLoS Comput. Biol..

[55]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .

[56]  David Kulp,et al.  Causal Inference of Regulator-Target Pairs by Gene Mapping of Expression Phenotypes , 2005, Systems Biology and Regulatory Genomics.

[57]  M. McCarthy,et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges , 2008, Nature Reviews Genetics.

[58]  R. Stoughton,et al.  Genetics of gene expression surveyed in maize, mouse and man , 2003, Nature.

[59]  Leonid Kruglyak,et al.  Local Regulatory Variation in Saccharomyces cerevisiae , 2005, PLoS genetics.

[60]  M. Pérez-Enciso In Silico Study of Transcriptome Genetic Variation in Outbred Populations , 2004, Genetics.

[61]  John D. Storey,et al.  Genetic interactions between polymorphisms that affect gene expression in yeast , 2005, Nature.

[62]  Li Wang,et al.  An integrative approach for causal gene identification and gene regulatory pathway inference , 2006, ISMB.

[63]  E. Petretto,et al.  Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease , 2005, Nature Genetics.

[64]  L. Liang,et al.  A genome-wide association study of global gene expression , 2007, Nature Genetics.

[65]  D. Pe’er,et al.  Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification , 2006, Proceedings of the National Academy of Sciences.

[66]  Shizhong Xu,et al.  Mapping Quantitative Trait Loci for Expression Abundance , 2007, Genetics.

[67]  C. Aquadro,et al.  Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster , 1992, Nature.

[68]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[69]  Daniel J. Kliebenstein,et al.  Linking Metabolic QTLs with Network and cis-eQTLs Controlling Biosynthetic Pathways , 2007, PLoS genetics.

[70]  Paul Schliekelman,et al.  Statistical Power of Expression Quantitative Trait Loci for Mapping of Complex Trait Loci in Natural Populations , 2008, Genetics.

[71]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[72]  A. Clark,et al.  Regulatory changes underlying expression differences within and between Drosophila species , 2008, Nature Genetics.

[73]  R. Kulathinal,et al.  Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence , 2008, Proceedings of the National Academy of Sciences.