Contractive freedoms of ensembles and quantum channels for infinite-dimensional systems

In this paper, we reveal that the unitary freedom in ensemble of pure states with a given state and the unitary freedom in operator-sum representation for a given channel are no longer valid for infinite-dimensional systems. The replacements of them are, respectively, the contractive freedom in ensemble and the contractive freedom in operator-sum representation. Precisely, we show that, (1) two ensembles \(\{|\phi _i\rangle , p_i\}\) and \(\{|\psi _j\rangle , q_j\}\) determine the same state if and only if there exists some contractive matrix \(V=(v_{ij})\) such that \(\sqrt{p_i}|\phi _i\rangle =\sum _j v_{ij}\sqrt{q_j}|\psi _j\rangle \) for each i; (2) two sequences \(\{A_i\}\) and \(\{B_j\}\) of Kraus operators in operator-sum representations determine the same quantum channel if and only if there exists some contractive matrix \(V=(v_{ij})\) such that \(A_i=\sum _jv_{ij}B_j\) for each i. All possible quantum ensembles of pure states with any given state and all possible operator-sum representations of any given channel are described.

[1]  J. Hou A characterization of positive linear maps and criteria of entanglement for quantum states , 2010, 1007.0560.

[2]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[3]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[4]  W. Majewski,et al.  On a characterization of positive maps , 2001 .

[5]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[6]  M. Ruskai,et al.  Entanglement Breaking Channels , 2003, quant-ph/0302031.

[7]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[8]  Karol Zyczkowski,et al.  Quantum error correcting codes from the compression formalism , 2005, quant-ph/0511101.

[9]  R. Simon,et al.  Operator-sum representation for bosonic Gaussian channels , 2010, 1012.4266.

[10]  M. E. Shirokov,et al.  Continuity of the von Neumann Entropy , 2009, 0904.1963.

[11]  S. Luo,et al.  Quantifying the quantumness of ensembles , 2017 .

[12]  S. Luo,et al.  Quantumness of quantum ensembles , 2011 .

[13]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[14]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[15]  L. Abbott,et al.  Eigenvalue spectra of random matrices for neural networks. , 2006, Physical review letters.

[16]  J. Hou,et al.  Fidelity and entanglement fidelity for infinite-dimensional quantum systems , 2014 .

[17]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[18]  P. Shukla Eigenvalue correlations for generalized Gaussian ensembles , 2000 .

[19]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .