GBM Volumetry using the 3D Slicer Medical Image Computing Platform

Volumetric change in glioblastoma multiforme (GBM) over time is a critical factor in treatment decisions. Typically, the tumor volume is computed on a slice-by-slice basis using MRI scans obtained at regular intervals. (3D)Slicer – a free platform for biomedical research – provides an alternative to this manual slice-by-slice segmentation process, which is significantly faster and requires less user interaction. In this study, 4 physicians segmented GBMs in 10 patients, once using the competitive region-growing based GrowCut segmentation module of Slicer, and once purely by drawing boundaries completely manually on a slice-by-slice basis. Furthermore, we provide a variability analysis for three physicians for 12 GBMs. The time required for GrowCut segmentation was on an average 61% of the time required for a pure manual segmentation. A comparison of Slicer-based segmentation with manual slice-by-slice segmentation resulted in a Dice Similarity Coefficient of 88.43 ± 5.23% and a Hausdorff Distance of 2.32 ± 5.23 mm.

[1]  Timothy F. Cootes,et al.  Active Shape Models - 'smart snakes' , 1992, BMVC.

[2]  W. Groß Grundzüge der Mengenlehre , 1915 .

[3]  Ron Kikinis,et al.  Statistical validation of image segmentation quality based on a spatial overlap index. , 2004, Academic radiology.

[4]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[5]  M. Droske,et al.  An adaptive level set method for interactive segmentation of intracranial tumors , 2005, Neurological Research.

[6]  Camilo Jimenez,et al.  Follow-up of pituitary tumor volume in patients with acromegaly treated with pegvisomant in clinical trials. , 2008, European journal of endocrinology.

[7]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[8]  Christopher Nimsky,et al.  Nugget-Cut: A Segmentation Scheme for Spherically- and Elliptically-Shaped 3D Objects , 2010, DAGM-Symposium.

[9]  Gareth Funka-Lea,et al.  Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials , 2004, ECCV Workshops CVAMIA and MMBIA.

[10]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[11]  G. Reifenberger,et al.  The WHO Classification of Tumors of the Nervous System , 2002, Journal of neuropathology and experimental neurology.

[12]  Moncef Gabbouj,et al.  A parallel marker based watershed transformation , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[13]  Timothy F. Cootes,et al.  Statistical models of appearance for computer vision , 1999 .

[14]  Christopher Nimsky,et al.  Manual Refinement System for Graph-Based Segmentation Results in the Medical Domain , 2012, Journal of Medical Systems.

[15]  W. van den Brink,et al.  Long-term treatment with the dopamine agonist quinagolide of patients with clinically non-functioning pituitary adenoma. , 2000, European journal of endocrinology.

[16]  Heinz Handels,et al.  Automatische Segmentierung von kontrastmittelaufnehmenden Hirntumoren in multispektralen MR-Bilddaten mittels Backpropagation-Netzwerken , 2001, Bildverarbeitung für die Medizin.

[17]  Branislav Jeremic,et al.  Radiochemotherapy of malignant glioma in adults. Clinical experiences. , 2003, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[18]  Guido Gerig,et al.  A brain tumor segmentation framework based on outlier detection , 2004, Medical Image Anal..

[19]  Branislav Jeremic,et al.  Radiochemotherapy of Malignant Glioma in Adults , 2003, Strahlentherapie und Onkologie.

[20]  A Horsman,et al.  Tumour volume determination from MR images by morphological segmentation , 1996, Physics in medicine and biology.

[21]  Hans-Peter Meinzer,et al.  New methods for leak detection and contour correction in seeded region growing segmentation , 2004 .

[22]  T. Cascino,et al.  Response criteria for phase II studies of supratentorial malignant glioma. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  Lawrence O. Hall,et al.  Automatic tumor segmentation using knowledge-based techniques , 1998, IEEE Transactions on Medical Imaging.

[24]  Christopher Nimsky,et al.  Evaluation of a Novel Approach for Automatic Volume Determination of Glioblastomas Based on Several Manual Expert Segmentations , 2011, ArXiv.

[25]  Zhou Wang,et al.  Measuring Intra- and Inter-Observer Agreement in Identifying and Localizing Structures in Medical Images , 2006, 2006 International Conference on Image Processing.

[26]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[27]  P. Szwarc Segmentation of Brain Tumours in MR Images , 2009 .

[28]  Napoleone Ferrara,et al.  Blocking Vascular Endothelial Growth Factor-A Inhibits the Growth of Pituitary Adenomas and Lowers Serum Prolactin Level in a Mouse Model of Multiple Endocrine Neoplasia Type 1 , 2008, Clinical Cancer Research.

[29]  Christopher Nimsky,et al.  A Medical Software System for Volumetric Analysis of Cerebral Pathologies in Magnetic Resonance Imaging (MRI) Data , 2012, Journal of Medical Systems.

[30]  Christopher Nimsky,et al.  A Flexible Semi-Automatic Approach for Glioblastoma multiforme Segmentation , 2011, ArXiv.

[31]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[32]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Wiro J Niessen,et al.  Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm. , 2004, Academic radiology.

[34]  Christopher Nimsky,et al.  Pituitary Adenoma Volumetry with 3D Slicer , 2012, PloS one.

[35]  Christopher Nimsky,et al.  Glioblastoma Multiforme Segmentation in MRI Data with a Balloon Inflation Approach , 2011, ArXiv.

[36]  William A. Barrett,et al.  Toboggan-based intelligent scissors with a four-parameter edge model , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[37]  B. A. Meyerson European Society for Stereotactic and Functional Neurosurgery , 2005, Acta Neurochirurgica.

[38]  Z L Gokaslan,et al.  A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. , 2001, Journal of neurosurgery.

[39]  William A. Barrett,et al.  Interactive Segmentation with Intelligent Scissors , 1998, Graph. Model. Image Process..

[40]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[41]  Christopher Nimsky,et al.  Square-Cut: A Segmentation Algorithm on the Basis of a Rectangle Shape , 2012, PloS one.

[42]  Olivier Clatz,et al.  Glioma Dynamics and Computational Models: A Review of Segmentation, Registration, and In Silico Growth Algorithms and their Clinical Applications , 2007 .

[43]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Vladimir Vezhnevets,et al.  “GrowCut” - Interactive Multi-Label N-D Image Segmentation By Cellular Automata , 2005 .