An Implicit Non-linear Numerical Scheme for Illumination-robust Variational Optical Flow

We present an optical flow calculation method based on the variational approach. The method uses an implicit non-linear numerical scheme that makes no assumption on the analytical form of the optical constraints and combines local and global smoothness criteria in a natural way. Defining the optical constraints with normalised cross-correlation, we obtain a technique that is robust against illumination changes in colour and greyscale images.

[1]  Nahum Kiryati,et al.  Piecewise-Smooth Dense Optical Flow via Level Sets , 2006, International Journal of Computer Vision.

[2]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[3]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[4]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[5]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[6]  Brendan McCane,et al.  On Benchmarking Optical Flow , 2001, Comput. Vis. Image Underst..

[7]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[8]  Olivier D. Faugeras,et al.  Variational Methods for Multimodal Image Matching , 2002, International Journal of Computer Vision.

[9]  William H. Press,et al.  Numerical recipes in C , 2002 .

[10]  Olivier D. Faugeras,et al.  Variational stereovision and 3D scene flow estimation with statistical similarity measures , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[11]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[12]  Joachim Weickert,et al.  Illumination-Robust Variational Optical Flow with Photometric Invariants , 2007, DAGM-Symposium.

[13]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[14]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[15]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[16]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[17]  P. Stumpf A gem from the past: Pleikart Stumpf's (1911) anticipation of the aperture problem, Reichardt detectors, and perceived motion loss at equiluminance. , 1996, Perception.

[18]  Dmitry Chetverikov,et al.  Illumination-robust variational optical flow based on cross-correlation ∗ , 2009 .

[19]  T. Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik a Survey on Variational Optic Flow Methods for Small Displacements a Survey on Variational Optic Flow Methods for Small Displacements , 2022 .

[20]  Dejan Todorović,et al.  A Gem from the Past: Pleikart Stumpf's (1911) Anticipation of the Aperture Problem, Reichardt Detectors, and Perceived Motion Loss at Equiluminance , 1996 .