Surface plasmon hybridization and exciton coupling

We derive a semianalytical model to describe the interaction of a single photon emitter and a collection of arbitrarily shaped metal nanoparticles. The theory treats the metal nanoparticles classically within the electrostatic eigenmode method, wherein the surface plasmon resonances of collections of nanoparticles are represented by the hybridization of the plasmon modes of the noninteracting particles. The single photon emitter is represented by a quantum mechanical two-level system that exhibits line broadening due to a finite spontaneous decay rate. Plasmon-emitter coupling is described by solving the resulting Bloch equations. We illustrate the theory by studying model systems consisting of a single emitter coupled to one, two, and three nanoparticles, and we also compare the predictions of our model to published experimental data. ©2012 American Physical Society.

[1]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[2]  J. Aizpurua,et al.  Using local fields to tailor hybrid quantum dot-metal nanoparticle systems: Connecting the dots , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[3]  Isaak D. Mayergoyz,et al.  Electrostatic (plasmon) resonances in nanoparticles , 2005 .

[4]  Paul Mulvaney,et al.  Influence of particle-substrate interaction on localized plasmon resonances. , 2010, Nano letters.

[5]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[6]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[7]  P. Guyot-Sionnest,et al.  Excitation of dark plasmons in metal nanoparticles by a localized emitter. , 2009, Physical review letters.

[8]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[9]  M. Stockman,et al.  Spaser action, loss compensation, and stability in plasmonic systems with gain. , 2010, Physical review letters.

[10]  L. Tay,et al.  SERS and the Single Molecule , 2002 .

[11]  Ortwin Hess,et al.  Overcoming losses with gain in a negative refractive index metamaterial. , 2010, Physical review letters.

[12]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[13]  S. Maier,et al.  Comment on "Spaser action, loss compensation, and stability in plasmonic systems with gain". , 2011, Physical review letters.

[14]  Bowden,et al.  Local-field effects in a dense collection of two-level atoms embedded in a dielectric medium: Intrinsic optical bistability enhancement and local cooperative effects. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles , 2006, physics/0601042.

[16]  V. Shalaev Optical negative-index metamaterials , 2007 .

[17]  K. Vernon,et al.  Interaction of molecules with localized surface plasmons in metallic nanoparticles , 2010 .

[18]  Nicholas A. Kotov,et al.  Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles , 2007 .

[19]  S. M. Sadeghi Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates , 2009 .

[20]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[21]  M. Schanne-Klein,et al.  Dielectric confinement and the linear and nonlinear optical properties of semiconductor-doped glasses , 1994 .

[22]  K. Vernon,et al.  Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles. , 2010, Nano letters.

[23]  Timothy J. Davis,et al.  Designing plasmonic systems using optical coupling between nanoparticles , 2009 .

[24]  A. Govorov,et al.  Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects , 2008, 0801.3213.

[25]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[26]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[27]  Dmitry Khoptyar,et al.  Excitation isotropy of single CdSe/ZnS nanocrystals. , 2011, Nano letters.

[28]  Bowden,et al.  Near-dipole-dipole effects in dense media: Generalized Maxwell-Bloch equations. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[29]  Garnett W. Bryant,et al.  Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies , 2006 .

[30]  Timothy J. Davis,et al.  Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures , 2010 .

[31]  Peter Nordlander,et al.  Plasmon modes of nanosphere trimers and quadrumers. , 2006, The journal of physical chemistry. B.

[32]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[33]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[34]  F J García de Abajo,et al.  Quantum plexcitonics: strongly interacting plasmons and excitons. , 2011, Nano letters.