Border Collision Bifurcations in a Footloose Capital Model with First Nature Firms

In this paper we extend the discrete time Footloose Capital model analyzed in Commendatore et al. (Nonlinear Dyn Psychol Life Sci 11(2):267–289, 2007) by introducing “first nature firms”, i.e., firms that use locally specific blueprints and, therefore, are immobile. Due to the presence of first nature firms (symmetrically distributed across the regions), the central dynamic map becomes a piecewise differentiable function: in addition to “standard” flip and pitchfork bifurcations also border collision bifurcations are possible and instances of multistability may emerge. Our analysis confirms and extends the results of Commendatore et al. (2007): (1) continuous time formulation hides complex dynamics patterns; (2) asymmetric distributions of industrial activity can be endogenously generated and are path dependent.

[1]  Laura Gardini,et al.  Bifurcation structure of parameter plane for a family of unimodal piecewise smooth maps: Border-collision bifurcation curves , 2006 .

[2]  Carl W. Condit,et al.  Nature's Metropolis: Chicago and the Great West , 1991 .

[3]  C. Petraglia,et al.  R&D Public Expenditure, Knowledge Spillovers and Agglomeration: Comparative Statics and Dynamics , 2010 .

[4]  Elisabetta Michetti,et al.  Border collision bifurcations of superstable cycles in a one-dimensional piecewise smooth map , 2010, Math. Comput. Simul..

[5]  Kiminori Matsuyama,et al.  Self-Defeating Regional Concentration , 1993 .

[6]  Pasquale Commendatore,et al.  Chaotic Footloose Capital. , 2007, Nonlinear dynamics, psychology, and life sciences.

[7]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[8]  L. Gardini,et al.  Global bifurcations in a piecewise-smooth Cournot duopoly game , 2010 .

[9]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Rikard Forslid,et al.  Economic Geography and Public Policy , 2011 .

[11]  Erik Mosekilde,et al.  Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems: Applications to Power Converters, Relay and Pulse-Width Modulated Control Systems, and Human Decision-Making Behavior , 2003 .

[12]  Michael Schanz,et al.  On multi-parametric bifurcations in a scalar piecewise-linear map , 2006 .

[13]  P. Picard,et al.  A Harmonization of First and Second Natures , 2010 .

[14]  Takatoshi Tabuchi,et al.  Locational disadvantage of the hub , 2006 .

[15]  Gilles Duranton,et al.  Urban Evolutions: The Fast, the Slow, and the Still , 2007 .

[16]  A. Venables,et al.  The Spatial Economy: Cities, Regions, and International Trade , 1999 .

[17]  Christian Mira,et al.  Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .

[18]  Michael Schanz,et al.  Border-Collision bifurcations in 1D Piecewise-Linear Maps and Leonov's Approach , 2010, Int. J. Bifurc. Chaos.

[19]  Masahisa Fujita,et al.  Frontiers of the New Economic Geography , 2005 .

[20]  Jörgen W. Weibull,et al.  Evolutionary Game Theory , 1996 .

[21]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[22]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[23]  Stein Østbye Regional Policy Analysis in a Simple General Equilibrium Model with Vertical Linkages , 2010 .

[24]  Masahisa Fujita,et al.  The role of ports in the making of major cities: Self-agglomeration and hub-effect , 1996 .

[25]  Michael W. M. Roos How important is geography for agglomeration , 2005 .

[26]  P. Krugman Theory, Policy and Dynamics in International Trade: The hub effect: or, threeness in interregional trade , 1993 .

[27]  Mario di Bernardo,et al.  Piecewise smooth dynamical systems , 2008, Scholarpedia.

[28]  Philippe Martin,et al.  Industrial location and public infrastructure , 1994 .

[29]  C. Davis Interregional Knowledge Spillovers and Occupational Choice in a Model of Free Trade and Endogenous Growth , 2009 .

[30]  Gilles Duranton,et al.  Some foundations for Zipf's law: Product proliferation and local spillovers , 2006 .

[31]  P. Krugman,et al.  First Nature, Second Nature, and Metropolitan Location , 1991 .

[32]  Anthony J. Venables,et al.  Shifts in Economic Geography and their Causes , 2006 .