A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions.

The displacement of probes that bind selectively to subdomains IIA or IIIA on human serum albumin (HSA) by competing compounds has been followed using fluorescence spectroscopy, and has therefore been used to assign a primary binding site for these compounds in the presence and absence of fatty acids. The crystal structures have also been solved for three compounds: a matched pair of carboxylic acids whose binding strength to HSA unexpectedly decreased as the lipophilicity increased; and a highly bound sulphonamide that appeared not to displace the probes in the displacement assay. The crystallography results support the findings from the fluorescence displacement assay. The results indicate that drug binding to subdomain IB might also be important location for certain compounds.

[1]  I. Sjöholm,et al.  Binding of drugs to human serum albumin:XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. , 1979, Molecular pharmacology.

[2]  N. Kishore,et al.  Calorimetric and spectroscopic studies on the interaction of methimazole with bovine serum albumin. , 2008, Journal of pharmaceutical sciences.

[3]  S. Tanase,et al.  Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity. , 2000, The Biochemical journal.

[4]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[5]  O. Dangles,et al.  Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. , 2005, Biochimica et biophysica acta.

[6]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[7]  M. J. Crooks,et al.  Displacement of tolbutamide, glibencalmide and chlorpropamide from serum albumin by anionic drugs. , 1976, Biochemical pharmacology.

[8]  Alexander Tropsha,et al.  QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. , 2006, Journal of medicinal chemistry.

[9]  L. Calabi,et al.  A molecular dynamics study of human serum albumin binding sites. , 2005, Farmaco.

[10]  P. Welling,et al.  Evidence for isoxicam binding to site I as a primary site and to site II as a secondary site of human serum albumin. , 1989, Biochemical pharmacology.

[11]  J. Tillement,et al.  The binding characteristics of some adrenergic beta-receptor antagonists to human serum proteins. , 1982, Biochemical Pharmacology.

[12]  M. Jiménez,et al.  Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins , 2006, ChemMedChem.

[13]  G. Trainor,et al.  The importance of plasma protein binding in drug discovery , 2007, Expert opinion on drug discovery.

[14]  Thomas J. Raub,et al.  A General, Wide-Range Spectrofluorometric Method for Measuring the Site-Specific Affinities of Drugs toward Human Serum Albumin , 1995 .

[15]  M. Otagiri,et al.  Characterization of site I on human serum albumin: concept about the structure of a drug binding site. , 1996, Biochimica et biophysica acta.

[16]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[17]  D. L. Parsons,et al.  Human Albumin Binding of Tamoxifen in the Presence of a Perfluorochemical Erythrocyte Substitute , 1991, The Journal of pharmacy and pharmacology.

[18]  M. Abraham,et al.  Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity. , 2003, Journal of pharmaceutical sciences.

[19]  D G Myszka,et al.  High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. , 2001, Analytical biochemistry.

[20]  Markus Kroemer,et al.  APRV - a program for automated data processing, refinement and visualization. , 2004, Acta crystallographica. Section D, Biological crystallography.

[21]  F. Lapicque,et al.  Binding Sites of Fluorescent Probes on Human Serum Albumin , 1994, The Journal of pharmacy and pharmacology.

[22]  Guoquan Liu,et al.  Determining binding sites of drugs on human serum albumin using FIA-QCM. , 2008, Biosensors & bioelectronics.

[23]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[24]  Manfred Kansy,et al.  Predicting plasma protein binding of drugs: a new approach. , 2002, Biochemical pharmacology.

[25]  P. Brooks,et al.  Structural requirements for drug binding to site II on human serum albumin. , 1983, Molecular pharmacology.

[26]  John E. Schiel,et al.  Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin: characterization by high-performance affinity chromatography. , 2009, Journal of chromatography. A.

[27]  W. Müller,et al.  The location of drug binding sites in human serum albumin. , 1981, Biochemical pharmacology.

[28]  Bruce G. Jenkins,et al.  Detection of site-specific binding and co-binding of ligands to human serum albumin using 19F NMR. , 1990, Molecular pharmacology.

[29]  Fredrik Bergström,et al.  High Throughput Screening of Drug‐Protein Binding in Drug Discovery , 2007 .

[30]  C. Chignell,et al.  RECENT ADVANCES IN METHODOLOGY: SPECTROSCOPIC TECHNIQUES , 1973 .

[31]  T. Soulimane,et al.  A novel free-mounting system for protein crystals: transformation and improvement of diffraction power by accurately controlled humidity changes , 2000 .

[32]  E. Lui,et al.  Functional modification of indole binding site with indomethacin congeners. , 1977, Journal of pharmaceutical sciences.

[33]  S. Curry,et al.  Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. , 2006, Journal of molecular biology.

[34]  U. Wollert,et al.  Characterization of the binding of benzodiazepines to human serum albumin , 2004, Naunyn-Schmiedeberg's Archives of Pharmacology.

[35]  R. Brodersen,et al.  Albumin binding of anti-inflammatory drugs. Utility of a site-oriented versus a stoichiometric analysis. , 1984, Molecular pharmacology.

[36]  K. Paal,et al.  Paclitaxel binding to the fatty acid-induced conformation of human serum albumin--automated docking studies. , 2007, Bioorganic & medicinal chemistry.

[37]  M. Koupparis,et al.  In‐vitro study on the competitive binding of diflunisal and uraemic toxins to serum albumin and human plasma using a potentiometric ion‐probe technique , 2006, The Journal of pharmacy and pharmacology.

[38]  S. Curry,et al.  Structural basis of the drug-binding specificity of human serum albumin. , 2005, Journal of molecular biology.

[39]  D. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1992, Nature.

[40]  T. Horie,et al.  Fluorescence energy transfer study of the relationship between the lone tryptophan residue and drug binding sites in human serum albumin. , 1987, Journal of pharmaceutical sciences.

[41]  G M Pacifici,et al.  Methods of Determining Plasma and Tissue Binding of Drugs , 1992, Clinical pharmacokinetics.

[42]  Manfred Kansy,et al.  Predicting plasma protein binding of drugs--revisited. , 2004, Current opinion in drug discovery & development.

[43]  H. Tajmir-Riahi,et al.  Study of curcumin and genistein interactions with human serum albumin. , 2009, Journal of pharmaceutical and biomedical analysis.

[44]  W. Müller,et al.  Characterization of an important drug binding area on human serum albumin including the high-affinity binding sites of warfarin and azapropazone. , 1982, Molecular pharmacology.

[45]  G. Sudlow,et al.  The characterization of two specific drug binding sites on human serum albumin. , 1975, Molecular pharmacology.

[46]  S. Curry,et al.  Crystallographic Analysis of Human Serum Albumin Complexed with 4Z,15E-Bilirubin-IXα , 2008, Journal of molecular biology.

[47]  P. Hajduk,et al.  Rational design of diflunisal analogues with reduced affinity for human serum albumin. , 2001, Journal of the American Chemical Society.

[48]  G. Sudlow,et al.  Further characterization of specific drug binding sites on human serum albumin. , 1976, Molecular pharmacology.

[49]  A. Douhal,et al.  Relaxation dynamics of piroxicam structures within human serum albumin protein. , 2007, Journal of medicinal chemistry.

[50]  A. Pîrnău,et al.  Binding interaction of indomethacin with human serum albumin. , 2008, Journal of pharmaceutical and biomedical analysis.

[51]  N. Pescosolido,et al.  An NMR spectroscopy study of bendaline-albumin interactions. , 2003, Bioorganic chemistry.