SUPERCONVERGENCE PROPERTIES OF DISCONTINUOUS GALERKIN METHODS FOR TWO-POINT BOUNDARY VALUE PROBLEMS
暂无分享,去创建一个
[1] Z. Chen,et al. On the relationship of various discontinuous finite element methods for second-order elliptic equations , 2001, J. Num. Math..
[2] L. M. Delves,et al. An Implicit Matching Principle for Global Element Calculations , 1979 .
[3] Zhimin Zhang,et al. Ultraconvergence of the patch recovery technique II , 2000, Math. Comput..
[4] Nick Levine,et al. Superconvergent Recovery of the Gradient from Piecewise Linear Finite-element Approximations , 1985 .
[5] Bernardo Cockburn,et al. Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..
[6] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[7] Zhangxin Chen,et al. Numerical study of the HP version of mixed discontinuous finite element methods for reaction‐diffusion problems: The 1D case , 2003 .
[8] G. A. Baker. Finite element methods for elliptic equations using nonconforming elements , 1977 .
[9] Pekka Neittaanmäki,et al. On superconvergence techniques , 1987 .
[10] Zhangxin Chen,et al. Stability and convergence of mixed discontinuous finite element methods for second-order differential problems , 2003, J. Num. Math..
[11] I. Babuska,et al. A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .
[12] Bernardo Cockburn. Discontinuous Galerkin methods , 2003 .
[13] SwitzerlandPaul HoustonOxford,et al. Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .
[14] P. Percell,et al. A Local Residual Finite Element Procedure for Elliptic Equations , 1978 .
[15] B. Rivière,et al. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .
[16] Ilaria Perugia,et al. An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..
[17] Richard E. Ewing,et al. The approximation of the pressure by a mixed method in the simulation of miscible displacement , 1983 .
[18] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[19] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[20] Ilaria Perugia,et al. Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..
[21] Zhimin Zhang. Ultraconvergence of the patch recovery technique , 1996, Math. Comput..
[22] Mary F. Wheeler,et al. Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .
[23] M. Wheeler. An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .
[24] J. Douglas,et al. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .
[25] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[26] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[27] F. Brezzi,et al. Discontinuous Galerkin approximations for elliptic problems , 2000 .
[28] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[29] M. Wheeler. Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems , 1999 .
[30] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..