SUPERCONVERGENCE PROPERTIES OF DISCONTINUOUS GALERKIN METHODS FOR TWO-POINT BOUNDARY VALUE PROBLEMS

Three discontinuous Galerkin methods (SIPG, NIPG, DG) are considered for solving a one-dimensional elliptic problem. Superconvergence for the error at the interior node points and the derivative of the error at Gauss points are considered. All theorectical results obtained in the paper are supported by the results of numerical experiments.

[1]  Z. Chen,et al.  On the relationship of various discontinuous finite element methods for second-order elliptic equations , 2001, J. Num. Math..

[2]  L. M. Delves,et al.  An Implicit Matching Principle for Global Element Calculations , 1979 .

[3]  Zhimin Zhang,et al.  Ultraconvergence of the patch recovery technique II , 2000, Math. Comput..

[4]  Nick Levine,et al.  Superconvergent Recovery of the Gradient from Piecewise Linear Finite-element Approximations , 1985 .

[5]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[6]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[7]  Zhangxin Chen,et al.  Numerical study of the HP version of mixed discontinuous finite element methods for reaction‐diffusion problems: The 1D case , 2003 .

[8]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[9]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[10]  Zhangxin Chen,et al.  Stability and convergence of mixed discontinuous finite element methods for second-order differential problems , 2003, J. Num. Math..

[11]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[12]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[13]  SwitzerlandPaul HoustonOxford,et al.  Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .

[14]  P. Percell,et al.  A Local Residual Finite Element Procedure for Elliptic Equations , 1978 .

[15]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[16]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[17]  Richard E. Ewing,et al.  The approximation of the pressure by a mixed method in the simulation of miscible displacement , 1983 .

[18]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[19]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[20]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[21]  Zhimin Zhang Ultraconvergence of the patch recovery technique , 1996, Math. Comput..

[22]  Mary F. Wheeler,et al.  Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .

[23]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[24]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[25]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[26]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[27]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[28]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[29]  M. Wheeler Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems , 1999 .

[30]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..