Fast synthesis of persistent fractional Brownian motion

Due to the relevance of self-similarity analysis in several research areas, there is an increased interest in methods to generate realizations of self-similar processes, namely in the ones capable of simulating long-range dependence. This article describes a new algorithm to approximate persistent fractional Brownian motions with a predefined Hurst parameter. The algorithm presents a computational complexity of O(n) and generates sequences with n (n& in; N) values with a small multiple of log2(n) variables. Because it operates in a sequential manner, the algorithm is suitable for simulations demanding real-time operation. A network traffic simulator is presented as one of its possible applications.

[1]  N. Kenkel,et al.  Fractals in the Biological Sciences , 1996 .

[2]  S. Rambaldi,et al.  An accurate fractional Brownian motion generator , 1994 .

[3]  Murad S. Taqqu,et al.  On the Self-Similar Nature of Ethernet Traffic , 1993, SIGCOMM.

[4]  Walter Willinger,et al.  On the Self-Similar Nature of Ethernet Traffic ( extended version ) , 1995 .

[5]  J. Brickmann B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. , 1985 .

[6]  H. Stanley,et al.  Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. , 1995, Chaos.

[7]  Ilkka Norros Studies on a model for connectionless traffic, based on fractional Brownian motion , 1992 .

[8]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[9]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[10]  Ilkka Norros,et al.  Simulation of fractional Brownian motion with conditionalized random midpoint displacement , 1999 .

[11]  H. Bock,et al.  Copulas and stochastic processes , 2003 .

[12]  Wayne Luk,et al.  Gaussian random number generators , 2007, CSUR.

[13]  Vern Paxson,et al.  Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic , 1997, CCRV.

[14]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[15]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[16]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[17]  A simple construction of the Fractional Brownian motion , 2002, math/0210272.

[18]  V. Pipiras Wavelet-based simulation of fractional Brownian motion revisited , 2005 .

[19]  Walter Willinger,et al.  Proof of a fundamental result in self-similar traffic modeling , 1997, CCRV.

[20]  Svetlozar T. Rachev,et al.  Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration , 2008 .

[21]  Laurent E. Calvet,et al.  A Multifractal Model of Asset Returns , 1997 .

[22]  Krzysztof Pawlikowski,et al.  Fast self-similar teletraffic generation based on FGN and wavelets , 1999, ICON.

[23]  Ilkka Norros,et al.  A storage model with self-similar input , 1994, Queueing Syst. Theory Appl..