A Bayesian Information Criterion for Portfolio Selection

The mean-variance theory of Markowitz (1952) indicates that large investment portfolios naturally provide better risk diversification than small ones. However, due to parameter estimation errors, one may find ambiguous results in practice. Hence, it is essential to identify relevant stocks to alleviate the impact of estimation error in portfolio selection. To this end, we propose a linkage condition to link the relevant and irrelevant stock returns via their conditional regression relationship. Subsequently, we obtain a BIC selection criterion that enables us to identify relevant stocks consistently. Numerical studies indicate that BIC outperforms commonly used portfolio strategies in the literature.

[1]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.

[2]  Yuhong Yang Adaptive Regression by Mixing , 2001 .

[3]  Hansheng Wang,et al.  On BIC's Selection Consistency for Discriminant Analysis , 2008 .

[4]  M. Statman,et al.  The Diversification Puzzle , 2004 .

[5]  Mark Britten-Jones,et al.  The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights , 1999 .

[6]  K. Lai,et al.  The common-trend and transitory dynamics in real exchange rate fluctuations , 2011 .

[7]  J. Shao AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .

[8]  Raman Uppal,et al.  A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms , 2009, Manag. Sci..

[9]  Valery Polkovnichenko Household Portfolio Diversification: A Case for Rank-Dependent Preferences , 2005 .

[10]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[11]  Stephen A. Ross,et al.  A Test of the Efficiency of a Given Portfolio , 1989 .

[12]  Guofu Zhou,et al.  Tests of Mean-Variance Spanning , 2008 .

[13]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[14]  Gur Huberman,et al.  Mean-Variance Spanning , 1987 .

[15]  Adrian E. Raftery,et al.  Bayesian model averaging: development of an improved multi-class, gene selection and classification tool for microarray data , 2005, Bioinform..

[16]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[17]  Jianqing Fan,et al.  High dimensional covariance matrix estimation using a factor model , 2007, math/0701124.

[18]  Hansheng Wang Forward Regression for Ultra-High Dimensional Variable Screening , 2009 .

[19]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[20]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[21]  Raman Uppal,et al.  Stock Return Serial Dependence and Out-of-Sample Portfolio Performance , 2013 .

[22]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[23]  Christoph Memmel,et al.  Estimating the Global Minimum Variance Portfolio , 2006 .

[24]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[25]  A. McQuarrie,et al.  Regression and Time Series Model Selection , 1998 .

[26]  Valery Polkovnichenko,et al.  Household Portfolio Diversification † , 2001 .

[27]  Hsien-Tang Tsai,et al.  Optimal mean-variance portfolio selection using Cauchy–Schwarz maximization , 2011 .

[28]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[29]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[30]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[31]  Yi-Chi Chen,et al.  Information shocks and cigarette addiction: views from dynamic panels with common structural changes , 2012 .