Generalized Frobenius extensions of finite rings and trace functions

We present a notion of generalized Frobenius extension for finite rings, and study related trace functions. Then we show applications of such extensions for algebraic coding theory.

[1]  A. A. Nechaev,et al.  Finite Rings with Applications , 2008 .

[2]  F. DeMeyer,et al.  Separable algebras over commutative rings , 1971 .

[3]  A. A. Nechaev Trace function in Galois ring and noise stable codes (in Russian) , 1982 .

[4]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[5]  Alexey S. Kuzmin,et al.  Trace-Function on a Galois Ring in Coding Theory , 1997, AAECC.

[6]  A. Nechaev,et al.  Kerdock code in a cyclic form , 1989 .

[7]  Jay A. Wood,et al.  Weight Functions and the Extension Theorem for Linear Codes over Finite Rings , 1999 .

[8]  A. A. Nechaev,et al.  FINITE QUASI-FROBENIUS MODULES AND LINEAR CODES , 2004 .

[9]  A. V. Mikhalev,et al.  Linear recurring sequences over rings and modules , 1995 .

[10]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[11]  A. Nechaev,et al.  Linear recurring sequences over Galois rings , 1995 .

[12]  Marcus Greferath,et al.  Finite-Ring Combinatorics and MacWilliams' Equivalence Theorem , 2000, J. Comb. Theory A.

[13]  T. Nakayama,et al.  A Remark on Frobenius Extensions and Endomorphism Rings , 1959, Nagoya Mathematical Journal.

[14]  Gerald J. Janusz,et al.  Separable algebras over commutative rings , 1966 .

[15]  R. Goldbach,et al.  A field-like property of finite rings , 1992 .

[16]  F. Kasch Grundlagen einer Theorie der Frobeniuserweiterungen , 1954 .

[17]  T. Honold,et al.  Weighted modules and representations of codes , 1998 .

[18]  Владимир Леонидович Куракин,et al.  Представление линейных рекуррентных последовательностей функцией след@@@Trace representation of linear recurring sequences , 2002 .