Graph networks for molecular design

Deep learning methods applied to chemistry can be used to accelerate the discovery of new molecules. This work introduces GraphINVENT, a platform developed for graph-based molecular design using graph neural networks (GNNs). GraphINVENT uses a tiered deep neural network architecture to probabilistically generate new molecules a single bond at a time. All models implemented in GraphINVENT can quickly learn to build molecules resembling the training set molecules without any explicit programming of chemical rules. The models have been benchmarked using the MOSES distribution-based metrics, showing how GraphINVENT models compare well with state-of-the-art generative models. This work compares six different GNN-based generative models in GraphINVENT, and shows that ultimately the gated-graph neural network performs best against the metrics considered here.

[1]  G. Klambauer,et al.  Practical notes on building molecular graph generative models , 2020, Applied AI Letters.

[2]  Andrey Kazennov,et al.  The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology , 2016, Oncotarget.

[3]  Niloy Ganguly,et al.  NeVAE: A Deep Generative Model for Molecular Graphs , 2018, AAAI.

[4]  Ah Chung Tsoi,et al.  Computational Capabilities of Graph Neural Networks , 2009, IEEE Transactions on Neural Networks.

[5]  Thomas Blaschke,et al.  Application of Generative Autoencoder in De Novo Molecular Design , 2017, Molecular informatics.

[6]  Yibo Li,et al.  Multi-objective de novo drug design with conditional graph generative model , 2018, Journal of Cheminformatics.

[7]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[8]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[9]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[10]  Edvard Lindelöf,et al.  Deep Learning for Drug Discovery, Property Prediction with Neural Networks on Raw Molecular Graphs , 2019 .

[11]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[12]  Li Li,et al.  Decoding Molecular Graph Embeddings with Reinforcement Learning , 2019, ArXiv.

[13]  Terrence J Sejnowski,et al.  The unreasonable effectiveness of deep learning in artificial intelligence , 2020, Proceedings of the National Academy of Sciences.

[14]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[15]  Regina Barzilay,et al.  Multi-resolution Autoregressive Graph-to-Graph Translation for Molecules , 2019, ArXiv.

[16]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[17]  Olexandr Isayev,et al.  MolecularRNN: Generating realistic molecular graphs with optimized properties , 2019, ArXiv.

[18]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[19]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[20]  Alán Aspuru-Guzik,et al.  Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models , 2018, Frontiers in Pharmacology.

[21]  Sepp Hochreiter,et al.  Self-Normalizing Neural Networks , 2017, NIPS.

[22]  Richard S. Zemel,et al.  Gated Graph Sequence Neural Networks , 2015, ICLR.

[23]  Esben Jannik Bjerrum,et al.  Molecular Generation with Recurrent Neural Networks (RNNs) , 2017, ArXiv.

[24]  Mol-CycleGAN: a generative model for molecular optimization , 2019, Journal of Cheminformatics.

[25]  Ola Engkvist,et al.  Practical notes on building molecular graph generative models , 2020 .

[26]  Vijay S. Pande,et al.  Molecular graph convolutions: moving beyond fingerprints , 2016, Journal of Computer-Aided Molecular Design.

[27]  Regina Barzilay,et al.  Analyzing Learned Molecular Representations for Property Prediction , 2019, J. Chem. Inf. Model..

[28]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[29]  Marwin H. S. Segler,et al.  GuacaMol: Benchmarking Models for De Novo Molecular Design , 2018, J. Chem. Inf. Model..

[30]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[31]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[32]  Renjie Liao,et al.  Efficient Graph Generation with Graph Recurrent Attention Networks , 2019, NeurIPS.

[33]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[34]  Alán Aspuru-Guzik,et al.  Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC) , 2017 .

[35]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[36]  M. Withnall,et al.  Building attention and edge message passing neural networks for bioactivity and physical–chemical property prediction , 2020, Journal of Cheminformatics.

[37]  Elman Mansimov,et al.  Molecular Geometry Prediction using a Deep Generative Graph Neural Network , 2019, Scientific Reports.

[38]  Sepp Hochreiter,et al.  Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery , 2018, J. Chem. Inf. Model..

[39]  W Patrick Walters,et al.  Assessing the impact of generative AI on medicinal chemistry , 2020, Nature Biotechnology.

[40]  Ola Engkvist,et al.  Randomized SMILES strings improve the quality of molecular generative models , 2019, Journal of Cheminformatics.

[41]  Weinan Zhang,et al.  GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation , 2020, ICLR.

[42]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[43]  Ola Engkvist,et al.  A de novo molecular generation method using latent vector based generative adversarial network , 2019, J. Cheminformatics.

[44]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[45]  Regina Barzilay,et al.  Learning Multimodal Graph-to-Graph Translation for Molecular Optimization , 2018, ICLR.

[46]  Krzysztof Rataj,et al.  Mol-CycleGAN: a generative model for molecular optimization , 2019, Journal of Cheminformatics.

[47]  Xavier Bresson,et al.  A Two-Step Graph Convolutional Decoder for Molecule Generation , 2019, ArXiv.

[48]  Christian Wachinger,et al.  Likelihood-Free Inference and Generation of Molecular Graphs , 2019, ArXiv.

[49]  G. Hessler,et al.  Artificial Intelligence in Drug Design , 2018, Molecules.

[50]  Junmei Wang,et al.  Deep convolutional generative adversarial network (dcGAN) models for screening and design of small molecules targeting cannabinoid receptors. , 2019, Molecular pharmaceutics.

[51]  A. Iosifidis,et al.  Graph convolutional networks , 2022, Deep Learning for Robot Perception and Cognition.

[52]  Michael Gastegger,et al.  Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules , 2019, NeurIPS.

[53]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[54]  Franco Scarselli,et al.  Molecular generative Graph Neural Networks for Drug Discovery , 2020, Neurocomputing.

[55]  Darren V. S. Green,et al.  BRADSHAW: a system for automated molecular design , 2019, Journal of Computer-Aided Molecular Design.

[56]  Emma J. Chory,et al.  A Deep Learning Approach to Antibiotic Discovery , 2020, Cell.

[57]  Joseph Gomes,et al.  MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a , 2017, Chemical science.

[58]  Frank Noé,et al.  Generating valid Euclidean distance matrices , 2019, ArXiv.

[59]  Zois Boukouvalas,et al.  Deep learning for molecular generation and optimization - a review of the state of the art , 2019, Molecular Systems Design & Engineering.

[60]  Michael Gastegger,et al.  Generating equilibrium molecules with deep neural networks , 2018, ArXiv.

[61]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.

[62]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[63]  Samy Bengio,et al.  Order Matters: Sequence to sequence for sets , 2015, ICLR.

[64]  Rafael Gómez-Bombarelli,et al.  Generative Models for Automatic Chemical Design , 2019, Machine Learning Meets Quantum Physics.

[65]  Thomas Blaschke,et al.  Molecular de-novo design through deep reinforcement learning , 2017, Journal of Cheminformatics.

[66]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[67]  Daniel T. Chang Tiered Latent Representations and Latent Spaces for Molecular Graphs , 2019, ArXiv.

[68]  T. Jaakkola,et al.  Hierarchical Generation of Molecular Graphs using Structural Motifs , 2020, ICML.

[69]  Nicola De Cao,et al.  MolGAN: An implicit generative model for small molecular graphs , 2018, ArXiv.

[70]  Jure Leskovec,et al.  GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models , 2018, ICML.

[71]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[72]  Motoki Abe,et al.  GraphNVP: An Invertible Flow Model for Generating Molecular Graphs , 2019, ArXiv.

[73]  Seokho Kang,et al.  Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation , 2019, Journal of Cheminformatics.

[74]  Razvan Pascanu,et al.  Learning Deep Generative Models of Graphs , 2018, ICLR 2018.

[75]  Daniel C. Elton,et al.  Deep learning for molecular generation and optimization - a review of the state of the art , 2019, Molecular Systems Design & Engineering.

[76]  Yoshua Bengio,et al.  DEFactor: Differentiable Edge Factorization-based Probabilistic Graph Generation , 2018, ArXiv.

[77]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.