Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution

We define the chromatin accessibility and transcriptional landscapes in 13 human primary blood cell types that span the hematopoietic hierarchy. Exploiting the finding that the enhancer landscape better reflects cell identity than mRNA levels, we enable 'enhancer cytometry' for enumeration of pure cell types from complex populations. We identify regulators governing hematopoietic differentiation and further show the lineage ontogeny of genetic elements linked to diverse human diseases. In acute myeloid leukemia (AML), chromatin accessibility uncovers unique regulatory evolution in cancer cells with a progressively increasing mutation burden. Single AML cells exhibit distinctive mixed regulome profiles corresponding to disparate developmental stages. A method to account for this regulatory heterogeneity identified cancer-specific deviations and implicated HOX factors as key regulators of preleukemic hematopoietic stem cell characteristics. Thus, regulome dynamics can provide diverse insights into hematopoietic development and disease.

[1]  H. Gralnick,et al.  Proposals for the Classification of the Acute Leukaemias French‐American‐British (FAB) Co‐operative Group , 1976, British journal of haematology.

[2]  S. Orkin,et al.  GATA transcription factors: key regulators of hematopoiesis. , 1995, Experimental hematology.

[3]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[4]  G. Sauvageau,et al.  Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. , 1997, Blood.

[5]  T. Graf,et al.  PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. , 1998, Genes & development.

[6]  R. Fanin,et al.  Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis: evidence for a pathogenetic role of B cells. , 2002, Arthritis and rheumatism.

[7]  Irving L. Weissman,et al.  Prospective isolation of human clonogenic common myeloid progenitors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  H. Kantarjian,et al.  Acute myeloid leukemia , 2018, Methods in Molecular Biology.

[9]  U. Thorsteinsdóttir,et al.  marrow cells induces stem cell expansion gene in bone Hoxa 9 associated − Overexpression of the myeloid leukemia , 2001 .

[10]  D. Tenen,et al.  Elevated c-Jun expression in acute myeloid leukemias inhibits C/EBPα DNA binding via leucine zipper domain interaction , 2003, Oncogene.

[11]  S. Pileri,et al.  PAX 5 Expression in Acute Leukemias : Higher B-Lineage Specificity Than CD 79 a and Selective Association with t ( 8 ; 21 )-Acute Myelogenous Leukemia , 2004 .

[12]  J. Miguel,et al.  Characterization of aberrant phenotypes in acute myeloblastic leukemia , 1995, Annals of Hematology.

[13]  M. B. van't Veer,et al.  The diagnosis of acute leukemia with undifferentiated or minimally differentiated blasts , 1992, Annals of Hematology.

[14]  L. Zon,et al.  Hematopoietic stem cell fate is established by the Notch-Runx pathway. , 2005, Genes & development.

[15]  H. Boswell,et al.  Constitutive c-jun N-terminal kinase activity in acute myeloid leukemia derives from Flt3 and affects survival and proliferation. , 2006, Experimental hematology.

[16]  Michal Schwartz,et al.  Selective ablation of bone marrow‐derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model , 2007, The European journal of neuroscience.

[17]  I. Weissman,et al.  Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. , 2007, Cell stem cell.

[18]  C. Geula,et al.  Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease , 2007, Nature Medicine.

[19]  S. Karlsson,et al.  Hoxa9/hoxb3/hoxb4 compound null mice display severe hematopoietic defects. , 2007, Experimental hematology.

[20]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[21]  P. Gregersen,et al.  Rheumatoid arthritis: a view of the current genetic landscape , 2009, Genes and Immunity.

[22]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[23]  Ken Chen,et al.  VarScan: variant detection in massively parallel sequencing of individual and pooled samples , 2009, Bioinform..

[24]  Annette Lee,et al.  Genome-wide association study in alopecia areata implicates both innate and adaptive immunity , 2010, Nature.

[25]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[26]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[27]  Jun Seita,et al.  Hematopoietic stem cell: self‐renewal versus differentiation , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[28]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[29]  Irving L. Weissman,et al.  A comprehensive methylome map of lineage commitment from hematopoietic progenitors , 2010, Nature.

[30]  D. Clayton,et al.  Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes , 2009, Nature Genetics.

[31]  P. Vyas,et al.  Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. , 2011, Cancer cell.

[32]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[33]  Ash A. Alizadeh,et al.  Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker , 2011, Proceedings of the National Academy of Sciences.

[34]  K. Hansen,et al.  Removing technical variability in RNA-seq data using conditional quantile normalization , 2012, Biostatistics.

[35]  G. Crooks,et al.  Lymphoid priming in human bone marrow begins before expression of CD 10 with upregulation of L-selectin , 2012 .

[36]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[37]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[38]  I. Weissman,et al.  Clonal Evolution of Preleukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia , 2012, Science Translational Medicine.

[39]  O. Abdel-Wahab,et al.  The role of mutations in epigenetic regulators in myeloid malignancies , 2012, Nature Reviews Cancer.

[40]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[41]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[42]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[43]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[44]  Jiwang Zhang,et al.  Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML , 2014, The Journal of experimental medicine.

[45]  Ash A. Alizadeh,et al.  FACTERA: a practical method for the discovery of genomic rearrangements at breakpoint resolution , 2014, Bioinform..

[46]  I. Weissman,et al.  Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission , 2014, Proceedings of the National Academy of Sciences.

[47]  Thomas J. Hudson,et al.  Corrigendum: Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia , 2014, Nature.

[48]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[49]  Randy J. Read,et al.  Transcriptional diversity during lineage commitment of human blood progenitors , 2014, Science.

[50]  Richard Leslie,et al.  GRASP: analysis of genotype-phenotype results from 1390 genome-wide association studies and corresponding open access database , 2014, Bioinform..

[51]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[52]  N. Friedman,et al.  Chromatin state dynamics during blood formation , 2014, Science.

[53]  Wei Wang,et al.  Predicting the Human Epigenome from DNA Motifs , 2014, Nature Methods.

[54]  Manolis Kellis,et al.  Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease , 2015, Nature.

[55]  Salam A. Assi,et al.  Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature , 2015, Cell reports.

[56]  Christina S. Leslie,et al.  Early enhancer establishment and regulatory locus complexity shape transcriptional programs in hematopoietic differentiation , 2015, Nature Genetics.

[57]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[58]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[59]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[60]  Ash A. Alizadeh,et al.  Robust enumeration of cell subsets from tissue expression profiles , 2015, Nature Methods.

[61]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.