A crossbar network for silicon quantum dot qubits

Quantum dots take a shortcut toward practical quantum information. The spin states of single electrons in gate-defined quantum dots satisfy crucial requirements for a practical quantum computer. These include extremely long coherence times, high-fidelity quantum operation, and the ability to shuttle electrons as a mechanism for on-chip flying qubits. To increase the number of qubits to the thousands or millions of qubits needed for practical quantum information, we present an architecture based on shared control and a scalable number of lines. Crucially, the control lines define the qubit grid, such that no local components are required. Our design enables qubit coupling beyond nearest neighbors, providing prospects for nonplanar quantum error correction protocols. Fabrication is based on a three-layer design to define qubit and tunnel barrier gates. We show that a double stripline on top of the structure can drive high-fidelity single-qubit rotations. Self-aligned inhomogeneous magnetic fields induced by direct currents through superconducting gates enable qubit addressability and readout. Qubit coupling is based on the exchange interaction, and we show that parallel two-qubit gates can be performed at the detuning-noise insensitive point. While the architecture requires a high level of uniformity in the materials and critical dimensions to enable shared control, it stands out for its simplicity and provides prospects for large-scale quantum computation in the near future.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  M. Lagally,et al.  Valley dependent anisotropic spin splitting in silicon quantum dots , 2018, npj Quantum Information.

[3]  Tammy Pluym,et al.  A silicon metal-oxide-semiconductor electron spin-orbit qubit , 2018, Nature Communications.

[4]  S. Barraud,et al.  Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell , 2018 .

[5]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[6]  Jonas Helsen,et al.  Quantum error correction in crossbar architectures , 2017, 1712.07571.

[7]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[8]  B. Hensen,et al.  Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout , 2017, Nature Communications.

[9]  Gerhard Klimeck,et al.  Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability , 2017, Physical Review B.

[10]  M. F. Gonzalez-Zalba,et al.  Conditional dispersive readout of a CMOS quantum dot via an integrated transistor circuit , 2017, 1708.04159.

[11]  G. Burkard,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017, 1708.03530.

[12]  J. Gambetta,et al.  Hardware-efficient Quantum Optimizer for Small Molecules and Quantum Magnets , 2017 .

[13]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[14]  L. M. K. Vandersypen,et al.  Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array , 2017, Nature.

[15]  M. Veldhorst,et al.  Silicon CMOS architecture for a spin-based quantum computer , 2016, Nature Communications.

[16]  M. F. Gonzalez-Zalba,et al.  Quantum and tunneling capacitance in charge and spin qubits , 2016, 1604.02884.

[17]  S. Sarma,et al.  Intrinsic errors in transporting a single-spin qubit through a double quantum dot , 2016, 1602.03179.

[18]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[19]  Hillsboro,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2016, 1612.05936.

[20]  Saeed Fallahi,et al.  Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. , 2015, Physical review letters.

[21]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[22]  L. Vandersypen,et al.  Single-spin CCD. , 2015, Nature nanotechnology.

[23]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[24]  Michelle Y. Simmons,et al.  A surface code quantum computer in silicon , 2015, Science Advances.

[25]  M. Veldhorst,et al.  Spin-orbit coupling and operation of multivalley spin qubits , 2015, 1505.01213.

[26]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[27]  R. S. Ross,et al.  Undoped accumulation-mode Si/SiGe quantum dots , 2014, Nanotechnology.

[28]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[29]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[30]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[31]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[32]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[33]  A. Harrow,et al.  Efficient distributed quantum computing , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[35]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[36]  W. Marsden I and J , 2012 .

[37]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[38]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[39]  Jason Twamley,et al.  Fault tolerance with noisy and slow measurements and preparation. , 2010, Physical review letters.

[40]  M. Siegel,et al.  Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures , 2009, 0911.1880.

[41]  C. F. Roos,et al.  Optimal control of entangling operations for trapped-ion quantum computing , 2008, 0809.1414.

[42]  M. K. Gowan,et al.  A 65 nm 2-Billion Transistor Quad-Core Itanium Processor , 2009, IEEE Journal of Solid-State Circuits.

[43]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[44]  Michael Siegel,et al.  Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films , 2005 .

[45]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[46]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[47]  L. Landau,et al.  Fermionic quantum computation , 2000 .

[48]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.