Mechanisms in the generation of grinding wheel topography by dressing

For the process of dressing vitrified bonded grinding wheels with diamond tools it has been unknown how the wheel topography is generated. Moreover, the influence of the kinematical dressing parameters on the wheel wear behavior has not been quantified. In the course of this article the grinding wheel was dealt with as a porous ceramic composite. In FEM simulations common dressing forces and usual dressing tool geometries were applied. The results were verified by dressing tests and grinding wheel scratch tests which show the wheel wear mechanisms. The common practice of decreasing the grinding wheel surface roughness by a finishing dressing stroke has to be reconsidered, because previous dressing strokes with higher depths of cut can weaken the grinding wheel structure and lead to an unsteady phase with high grinding wheel wear after dressing.