Implicit Time-Discretization of the Nonstationary Incompressible Navier-Stokes Equations

This paper deals with implicit time-discretization of the nonstationary incompressible Navier-Stokes equations. The emphasis is on the so-called “fractional-step-e-scheme” in which the incompressibility constraint is treated either fully implicitly or semi-implicitly by employing operator splitting (projection method). Recently a complete mathematical analysis has become available for methods of this type which supports current computational experience. The fractional-step-θ-scheme has proven to be a robust and accurate time-stepping method which is in several respects superior to the traditional Crank-Nicolson scheme. Combined with operator splitting it is particularly suitable for the long time computation of complex flows.

[1]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[2]  Gabriel Wittum,et al.  On the Construction of Robust Smoothers for Incompressible Flow Problems , 1994 .

[3]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[4]  Steffen Müller-Urbaniak,et al.  Eine Analyse des Zwischenschritt-Theta-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen , 1993 .

[5]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[6]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[7]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[8]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[9]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[10]  Friedhelm Schieweck,et al.  A Parallel Multigrid Algorithm for Solving the Navier-Stokes Equations , 1993, IMPACT Comput. Sci. Eng..

[11]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[12]  P. Kloucek,et al.  Stability of the fractional step T-scheme for the nonstationary Navier-Stokes equations , 1994 .

[13]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[14]  R. Glowinski,et al.  Numerical methods for the navier-stokes equations. Applications to the simulation of compressible and incompressible viscous flows , 1987 .

[15]  Roger Temam,et al.  Remark on the pressure boundary condition for the projection method , 1991 .

[16]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[17]  Rolf Rannacher,et al.  Numerical methods for the Navier-Stokes equations , 1994 .

[18]  R. Rannacher Numerical Analysis of Nonstationary Fluid Flow , 1989 .

[19]  Stefan Turek,et al.  Tools for simulating non‐stationary incompressible flow via discretely divergence‐free finite element models , 1994 .

[20]  Rolf Rannacher Numerical analysis of the Navier-Stokes equations , 1993 .

[21]  Peter Schreiber,et al.  An efficient finite element solver for the nonstationary incompressible Navier-Stokes equations in two and three dimensions , 1994 .