Finite-Gap Solutions of the Vortex Filament Equation: Genus One Solutions and Symmetric Solutions

AbstractFor the class of quasiperiodic solutions of the vortex filament equation, we study connections between the algebro-geometric data used for their explicit construction, and the geometry of the evolving curves. We give a complete description of genus one solutions, including geometrically interesting special cases such as Euler elastica, constant torsion curves, and self-intersecting filaments. We also prove generalizations of these connections to higher genus.

[1]  T. Ivey,et al.  BÄCKLUND TRANSFORMATIONS AND KNOTS OF CONSTANT TORSION , 1996, dg-ga/9608001.

[2]  Renzo L. Ricca,et al.  The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics , 1996 .

[3]  Recent Developments In Integrable Curve Dynamics , 1997 .

[4]  P. Gragert,et al.  Exact solution to localized-induction-approximation equation modeling smoke ring motion. , 1986, Physical review letters.

[5]  Joel Langer,et al.  Poisson geometry of the filament equation , 1991 .

[6]  P. Grinevich,et al.  Closed curves in R^3: a characterization in terms of curvature and torsion, the Hasimoto map and periodic solutions of the Filament Equation , 1997 .

[7]  S. Kida A vortex filament moving without change of form , 1981, Journal of Fluid Mechanics.

[8]  T. Ivey,et al.  TOPOLOGY AND SINE-GORDON EVOLUTION OF CONSTANT TORSION CURVES , 1999 .

[9]  G. Lamb Elements of soliton theory , 1980 .

[10]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[11]  P. Grinevich,et al.  Approximation theorem for the self-focusing Nonlinear Schrödinger Equation and for the periodic curves in R3 , 2000, nlin/0002020.

[12]  Boris Dubrovin,et al.  Theta functions and non-linear equations , 1981 .

[13]  Joel Langer,et al.  Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..

[14]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[15]  R. Bishop There is More than One Way to Frame a Curve , 1975 .

[16]  A. Sym Soliton surfaces , 1983 .

[17]  H. Hasimoto,et al.  A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.

[18]  A. Sym Vortex filament motion in terms of Jacobi theta functions , 1988 .

[19]  K. Pohlmeyer,et al.  Integrable Hamiltonian systems and interactions through quadratic constraints , 1976 .

[20]  E. Previato Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation , 1985 .

[21]  H. K. Moffatt Topological aspects of the dynamics of fluids and plasmas , 1992 .

[22]  D. A. Singer,et al.  Knot Types, Homotopies and Stability of Closed Elastic Rods , 1999, math/9901131.

[23]  A. Calini A note on a Bäcklund transformation for the continuous Heisenberg model , 1995 .

[24]  Igor Krichever,et al.  METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .

[25]  P. Grinevich,et al.  Period preserving nonisospectral flows and the moduli space of periodic solutions of soliton equations , 1995 .

[26]  THE BETA FUNCTION OF A KNOT , 1997, dg-ga/9710011.

[27]  T. Ivey,et al.  Knot types, Floquet spectra, and finite-gap solutions of the vortex filament equation , 2001 .

[28]  P. Byrd,et al.  Handbook of Elliptic Integrals for Engineers and Physicists , 2014 .

[29]  和達 三樹 G. L. Lamb, Jr.: Elements of Soliton Theory, John Wiley, New York and Chichester, 1980, xiii+289ページ, 24×17cm, 8,980円(Pure and Applied Mathematics; A Wiley-Interscience Series of Texts, Monographs and Tracts). , 1981 .

[30]  P.G.Grinevich,et al.  Period preserving nonisospectral flows and the moduli space of periodic solutions of soliton equations , 1994, solv-int/9412005.

[31]  James P. Keener,et al.  Knotted vortex filaments in an ideal fluid , 1990, Journal of Fluid Mechanics.

[32]  Connecting geometry, topology and spectra for finite-gap NLS potentials , 2001 .