Salience modulates 20–30 Hz brain activity in Drosophila

Fruit flies selectively orient toward the visual stimuli that are most salient in their environment. We recorded local field potentials (LFPs) from the brains of Drosophila melanogaster as they responded to the presentation of visual stimuli. Coupling of salience effects (odor, heat or novelty) to these stimuli modulated LFPs in the 20–30 Hz range by evoking a transient, selective increase. We demonstrated the association of these responses with behavioral tracking and initiated a genetic approach to investigating neural correlates of perception.

[1]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[2]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[3]  M. Dickinson,et al.  The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. , 1997, The Journal of experimental biology.

[4]  Roberto Malinow,et al.  Genetic Manipulation of the Odor-Evoked Distributed Neural Activity in the Drosophila Mushroom Body , 2001, Neuron.

[5]  Walter Kaiser,et al.  Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect , 1983, Nature.

[6]  N. Strausfeld,et al.  Evolution, discovery, and interpretations of arthropod mushroom bodies. , 1998, Learning & memory.

[7]  Discrimination of some visual patterns inDrosophila melanogaster , 1982, Journal of comparative physiology.

[8]  Kenneth O. Johnson,et al.  Synchrony: a neuronal mechanism for attentional selection? , 2002, Current Opinion in Neurobiology.

[9]  W. Quinn,et al.  Flies, genes, and learning. , 2001, Annual review of neuroscience.

[10]  A Guo,et al.  Association of visual objects and olfactory cues in Drosophila. , 1997, Learning & memory.

[11]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[12]  G. Tononi,et al.  Correlates of sleep and waking in Drosophila melanogaster. , 2000, Science.

[13]  Martin Heisenberg,et al.  Targeted expression of tetanus neurotoxin interferes with behavioral responses to sensory input in Drosophila. , 2002, Journal of neurobiology.

[14]  M Heisenberg,et al.  Visual pattern memory without shape recognition. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  R. Menzel,et al.  Cognitive architecture of a mini-brain: the honeybee , 2001, Trends in Cognitive Sciences.

[16]  S. Hillyard,et al.  Event-related brain potentials in the study of visual selective attention. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Menzel Searching for the memory trace in a mini-brain, the honeybee. , 2001, Learning & memory.

[18]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[19]  Holger G. Krapp,et al.  Neural encoding of behaviourally relevant visual-motion information in the fly , 2002, Trends in Neurosciences.

[20]  D. Mumford,et al.  Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency , 2002, Nature Neuroscience.

[21]  Tim Tully,et al.  Associative Learning Disrupted by Impaired Gs Signaling in Drosophila Mushroom Bodies , 1996, Science.

[22]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[23]  B. Ganetzky,et al.  Molecular analysis of the para locus, a sodium channel gene in Drosophila , 1989, Cell.

[24]  Karl Georg Götz,et al.  Exploratory strategies in Drosophila , 1994 .

[25]  C. G. BUTLER,et al.  The Honeybee , 1942, Nature.

[26]  Philip J. Bushnell,et al.  Behavioral approaches to the assessment of attention in animals , 1998, Psychopharmacology.

[27]  Zhefeng Gong,et al.  An emergent mechanism of selective visual attention in Drosophila , 2000, Biological Cybernetics.

[28]  Jean-René Martin,et al.  Genetic identification of neurons controlling a sexually dimorphic behaviour , 2000, Current Biology.

[29]  M. Heisenberg,et al.  Basic organization of operant behavior as revealed in Drosophila flight orientation , 1991, Journal of Comparative Physiology A.

[30]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[31]  Leslie C. Griffith,et al.  Mapping of the anatomical circuit of CaM kinase-dependent courtship conditioning in Drosophila. , 1999, Learning & memory.

[32]  T. S. Collett,et al.  Some operating rules for the optomotor system of a hoverfly during voluntary flight , 1980, Journal of comparative physiology.

[33]  R. Hardie,et al.  Calcium Influx via TRP Channels Is Required to Maintain PIP2 Levels in Drosophila Photoreceptors , 2001, Neuron.

[34]  G. Tononi,et al.  Electrophysiological Correlates of Rest and Activity in Drosophila melanogaster , 2002, Current Biology.

[35]  S. D. Carlson,et al.  Temperature-Sensitive Paralytic Mutations Demonstrate that Synaptic Exocytosis Requires SNARE Complex Assembly and Disassembly , 1998, Neuron.

[36]  Richard B. Vallee,et al.  Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis , 1991, Nature.

[37]  Leslie C. Griffith,et al.  CaM Kinase II and Visual Input Modulate Memory Formation in the Neuronal Circuit Controlling Courtship Conditioning , 1997, The Journal of Neuroscience.

[38]  A. Fiala,et al.  Genetically Expressed Cameleon in Drosophila melanogaster Is Used to Visualize Olfactory Information in Projection Neurons , 2002, Current Biology.

[39]  M Heisenberg,et al.  Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. , 1998, Learning & memory.

[40]  D. Spalding The Principles of Psychology , 1873, Nature.

[41]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[42]  C. Wu,et al.  Allelic interactions at the shibire locus of Drosophila: effects on behavior. , 1990, Journal of neurogenetics.

[43]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .