Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method

Abstract Light wave propagation within liquid crystal (LC) devices is studied using a two-dimensional (2-D) finite-difference time-domain (FDTD) method. Computational space termination is provided by a combination of the perfectly matched layer absorbing boundary condition and periodic boundary conditions, to overcome the limitations imposed by previously proposed FDTD methods for LC optics. Both normal and oblique incidence cases are successfully implemented and a consistent method for magnitude and phase extraction is made available. This provides a rigorous numerical solution for the light wave propagating within LC devices, and a sample application for a small twisted nematic pixel is given.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[3]  Raj Mittra,et al.  Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for , 1994 .

[4]  J. Schneider,et al.  A finite-difference time-domain method applied to anisotropic material , 1993 .

[5]  Philip J. Bos,et al.  Two‐Dimensional Optical Simulation Tool for Use in Microdisplay Analysis , 1999 .

[6]  A. Lien,et al.  Extended Jones matrix representation for the twisted nematic liquid‐crystal display at oblique incidence , 1990 .

[7]  Raj Mittra,et al.  A new finite-difference time-domain (FDTD) algorithm for efficient field computation in resonator narrow-band structures , 1993, IEEE Microwave and Guided Wave Letters.

[8]  Emmanouil E. Kriezis,et al.  Finite-difference time domain method for light wave propagation within liquid crystal devices , 1999 .

[9]  J. Bérenger Perfectly matched layer for the FDTD solution of wave-structure interaction problems , 1996 .

[10]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[11]  E. Kriezis,et al.  Light wave propagation in periodic tilted liquid crystal structures: a periodic beam propagation method , 1999 .

[12]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[13]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[14]  E. Kriezis,et al.  Light propagation in domain walls in ferroelectric liquid crystal devices by the finite-difference time-domain method , 2000 .

[15]  W. Fichtner,et al.  Rigorous electromagnetic simulation of liquid crystal displays , 1998 .