Modeling Solar Irradiance and Solar PV Power Output to Create a Resource Assessment Using Linear Multiple Multivariate Regression

AbstractThe increased use of solar photovoltaic (PV) cells as energy sources on electric grids has created the need for more accessible solar irradiance and power production estimates for use in power modeling software. In the present paper, a novel technique for creating solar irradiance estimates is introduced. A solar PV resource dataset created by combining numerical weather prediction assimilation model variables, satellite data, and high-resolution ground-based measurements is also presented. The dataset contains ≈152 000 geographic locations each with ≈26 000 hourly time steps. The solar irradiance outputs are global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance (DIF). The technique is developed over the United States by training a linear multiple multivariate regression scheme at 10 locations. The technique is then applied to independent locations over the whole geographic domain. The irradiance estimates are input into a solar PV power modeling alg...

[1]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[2]  Alexander E. MacDonald,et al.  Demonstrating the effect of vertical and directional shear for resource mapping of wind power , 2016 .

[3]  J. Kleissl,et al.  Validation of the NSRDB–SUNY global horizontal irradiance in California , 2010 .

[4]  H. Theil,et al.  Economic Forecasts and Policy. , 1959 .

[5]  Alexander E. MacDonald,et al.  Linear programming techniques for developing an optimal electrical system including high-voltage direct-current transmission and storage , 2015 .

[6]  J. Kleissl,et al.  Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States , 2011 .

[7]  F. Trieb,et al.  Comparison of Different Methods for Measuring Solar Irradiation Data , 2003 .

[8]  Richard Perez,et al.  Assessment of SUNY Version 3 Global Horizontal and Direct Normal Solar Irradiance in Canada , 2012 .

[9]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[10]  Michael A. Salsburg,et al.  Modeling and Forecasting , 2007, Int. CMG Conference.

[11]  A. Hammer,et al.  Short-term forecasting of solar radiation: a statistical approach using satellite data , 1999 .

[12]  Chung-Cheng Chen,et al.  A Novel Power Output Model for Photovoltaic Systems , 2013 .

[13]  Daryl R. Myers,et al.  Solar Radiation Modeling and Measurements for Renewable Energy Applications: Data and Model Quality , 2004 .

[14]  J. Michalsky,et al.  Solar and Infrared Radiation Measurements , 2012 .

[15]  Gilbert M. Masters,et al.  Renewable and Efficient Electric Power Systems , 2004 .

[16]  Colleen Lueken,et al.  Costs of solar and wind power variability for reducing CO2 emissions. , 2012, Environmental science & technology.

[17]  H. Theil,et al.  Contributions to Economic Analysis: Economic Forecasts and Policy. , 1961 .

[18]  Joseph J. Michalsky,et al.  An Update on SURFRAD—The GCOS Surface Radiation Budget Network for the Continental United States , 2005 .

[19]  J. Stanton Galton, Pearson, and the Peas: A Brief History of Linear Regression for Statistics Instructors , 2001 .

[20]  Jan Kleissl,et al.  A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting , 2013 .

[21]  W. Chow,et al.  Solar radiation model , 2001 .

[22]  Zhe Wang,et al.  Solar Irradiance Short-Term Prediction Model Based on BP Neural Network , 2011 .

[23]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[24]  Sandip Deshmukh,et al.  Modeling of hybrid renewable energy systems , 2008 .

[25]  R. Dickinson,et al.  Critical assessment of surface incident solar radiation observations collected by SURFRAD, USCRN and AmeriFlux networks from 1995 to 2011 , 2012 .

[26]  Sigifredo Gonzalez,et al.  Performance Model for Grid-Connected Photovoltaic Inverters , 2007 .

[27]  A. Mills,et al.  Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power , 2010 .

[28]  J. A. Ruiz-Arias,et al.  Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe , 2013 .

[29]  Gilbert M. Masters,et al.  Renewable and Efficient Electric Power Systems: Masters/Electric Power Systems , 2004 .

[30]  B. Hicks,et al.  The NOAA Integrated Surface Irradiance Study (ISIS) - A new surface radiation monitoring program , 1996 .

[31]  Wei Zhou,et al.  A novel model for photovoltaic array performance prediction , 2007 .

[32]  K. Pearson,et al.  ON THE GENERALISED PROBABLE ERROR IN MULTIPLE NORMAL CORRELATION , 1908 .

[33]  R. Perez,et al.  Analysis of satellite derived beam and global solar radiation data , 2007 .

[34]  Rasmus Houborg,et al.  Inferences of all‐sky solar irradiance using Terra and Aqua MODIS satellite data , 2007 .

[35]  Yuanfu Xie,et al.  Future cost-competitive electricity systems and their impact on US CO2 emissions , 2016 .

[36]  Ibrahim Reda,et al.  Results from the first ARM diffuse horizontal shortwave irradiance comparison , 2003 .

[37]  Richard Perez,et al.  SOLAR RESOURCE GIS DATA BASE FOR THE PACIFIC NORTHWEST USING SATELLITE DATA , 2004 .

[38]  Viorel Badescu,et al.  Weather Modeling and Forecasting of PV Systems Operation , 2012 .