Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and Self-Control Gradient Estimator

Semantic hashing has become a crucial component of fast similarity search in many large-scale information retrieval systems, in particular, for text data. Variational auto-encoders (VAEs) with binary latent variables as hashing codes provide state-of-the-art performance in terms of precision for document retrieval. We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing. Instead of solving the optimization relying on existing biased gradient estimators, an unbiased low-variance gradient estimator is adopted to optimize the hashing function by evaluating the non-differentiable loss function over two correlated sets of binary hashing codes to control the variance of gradient estimates. This new semantic hashing framework achieves superior performance compared to the state-of-the-arts, as demonstrated by our comprehensive experiments.

[1]  Geoffrey E. Hinton,et al.  Semantic hashing , 2009, Int. J. Approx. Reason..

[2]  Rongrong Ji,et al.  Supervised hashing with kernels , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[4]  Dan Zhang,et al.  Semantic hashing using tags and topic modeling , 2013, SIGIR.

[5]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[6]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[7]  Guoyin Wang,et al.  NASH: Toward End-to-End Neural Architecture for Generative Semantic Hashing , 2018, ACL.

[8]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[9]  Xiaoning Qian,et al.  Probabilistic Best Subset Selection via Gradient-Based Optimization , 2020, 2006.06448.

[10]  Mingyuan Zhou,et al.  ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks , 2018, ICLR.

[11]  Xiaoning Qian,et al.  Learnable Bernoulli Dropout for Bayesian Deep Learning , 2020, AISTATS.

[12]  Xiaoning Qian,et al.  Arsm Gradient Estimator for Supervised Learning to Rank , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[13]  Jun Wang,et al.  Self-taught hashing for fast similarity search , 2010, SIGIR.

[14]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[15]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[16]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[17]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[18]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[19]  Shih-Fu Chang,et al.  Semi-supervised hashing for scalable image retrieval , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Yoshua Bengio,et al.  Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation , 2013, ArXiv.

[21]  Sergei Vassilvitskii,et al.  Nearest-neighbor caching for content-match applications , 2009, WWW '09.

[22]  Alexander A. Alemi,et al.  Fixing a Broken ELBO , 2017, ICML.

[23]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[24]  Alexandr Andoni,et al.  Nearest neighbor search : the old, the new, and the impossible , 2009 .

[25]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[26]  Phil Blunsom,et al.  Neural Variational Inference for Text Processing , 2015, ICML.

[27]  Stefano Ermon,et al.  InfoVAE: Balancing Learning and Inference in Variational Autoencoders , 2019, AAAI.

[28]  Yi Fang,et al.  Variational Deep Semantic Hashing for Text Documents , 2017, SIGIR.

[29]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[30]  Wei Liu,et al.  Hashing with Graphs , 2011, ICML.

[31]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[32]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[33]  Juan Enrique Ramos,et al.  Using TF-IDF to Determine Word Relevance in Document Queries , 2003 .

[34]  Alexander M. Rush,et al.  Avoiding Latent Variable Collapse With Generative Skip Models , 2018, AISTATS.