Nkx6.1 decline accompanies mitochondrial DNA reduction but subtle nucleoid size decrease in pancreatic islet β-cells of diabetic Goto Kakizaki rats

[1]  P. Ježek,et al.  Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress. , 2016, Toxicology and applied pharmacology.

[2]  C. Gustafsson,et al.  Maintenance and Expression of Mammalian Mitochondrial DNA. , 2016, Annual review of biochemistry.

[3]  P. Ježek,et al.  Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM , 2016, European Biophysics Journal.

[4]  S. Jakobs,et al.  Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid , 2015, Proceedings of the National Academy of Sciences.

[5]  J. Marín-García,et al.  Mitochondrial DNA maintenance: an appraisal , 2015, Molecular and Cellular Biochemistry.

[6]  P. Ježek,et al.  Delta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats , 2015, Journal of diabetes research.

[7]  D. Reguera,et al.  Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy , 2015, Journal of Bioenergetics and Biomembranes.

[8]  Wenjun Xie,et al.  Calcium release channel RyR2 regulates insulin release and glucose homeostasis. , 2015, The Journal of clinical investigation.

[9]  K. Kaestner,et al.  The diabetes gene Hhex maintains δ-cell differentiation and islet function , 2014, Genes & development.

[10]  M. Sander,et al.  Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. , 2013, Cell reports.

[11]  M. Iijima,et al.  Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology , 2013, Molecular biology of the cell.

[12]  K. Smolková,et al.  Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells. , 2013, The international journal of biochemistry & cell biology.

[13]  M. Falkenberg,et al.  TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication , 2013, Human molecular genetics.

[14]  Y. Dor,et al.  β-cell dedifferentiation and type 2 diabetes. , 2013, The New England journal of medicine.

[15]  K. Kaestner,et al.  Nkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity , 2013, PLoS genetics.

[16]  Lei Yang,et al.  Overexpression of TFAM Protects 3T3-L1 Adipocytes from NYGGF4 (PID1) Overexpression-Induced Insulin Resistance and Mitochondrial Dysfunction , 2013, Cell Biochemistry and Biophysics.

[17]  C. Talchai,et al.  Pancreatic β Cell Dedifferentiation as a Mechanism of Diabetic β Cell Failure , 2012, Cell.

[18]  J. Kolesar,et al.  Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. , 2012, Biochimica et biophysica acta.

[19]  Harald F Hess,et al.  Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes , 2012, Proceedings of the National Academy of Sciences.

[20]  D. Sorriento,et al.  Age-Related Impairment in Insulin Release , 2012, Diabetes.

[21]  B. Portha,et al.  The GK rat: a prototype for the study of non-overweight type 2 diabetes. , 2012, Methods in molecular biology.

[22]  D. Sorriento,et al.  Age-Related Impairment in Insulin Release The Essential Role of b 2-Adrenergic Receptor , 2012 .

[23]  D. Chan,et al.  TFAM imposes a U-turn on mitochondrial DNA , 2011 .

[24]  F. Saudek,et al.  Assessment of mitochondrial DNA as an indicator of islet quality: an example in Goto Kakizaki rats. , 2011, Transplantation proceedings.

[25]  Harald F Hess,et al.  Superresolution Fluorescence Imaging of Mitochondrial Nucleoids Reveals Their Spatial Range, Limits, and Membrane Interaction , 2011, Molecular and Cellular Biology.

[26]  S. Jakobs,et al.  Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA , 2011, Proceedings of the National Academy of Sciences.

[27]  Steven P. Callahan,et al.  Sample drift correction in 3D fluorescence photoactivation localization microscopy , 2011 .

[28]  L. Eliasson,et al.  Differential Glucose-Regulation of MicroRNAs in Pancreatic Islets of Non-Obese Type 2 Diabetes Model Goto-Kakizaki Rat , 2011, PloS one.

[29]  D. Kang,et al.  Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. , 2010, Biochimica et biophysica acta.

[30]  A. Dlasková,et al.  4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. , 2010, Biochimica et biophysica acta.

[31]  G. Lacraz,et al.  Islet structure and function in the GK rat. , 2010, Advances in experimental medicine and biology.

[32]  P. Ježek,et al.  Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia. , 2009, The international journal of biochemistry & cell biology.

[33]  F. Pattou,et al.  PDX1 deficiency causes mitochondrial dysfunction and defective insulin secretion through TFAM suppression. , 2009, Cell metabolism.

[34]  A. Fersht,et al.  The accessory subunit of mitochondrial DNA polymerase γ determines the DNA content of mitochondrial nucleoids in human cultured cells , 2009, Nucleic acids research.

[35]  M. Dolz,et al.  The GK rat beta-cell: A prototype for the diseased human beta-cell in type 2 diabetes? , 2009, Molecular and Cellular Endocrinology.

[36]  E. Schon,et al.  Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation , 2008, The Journal of cell biology.

[37]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[38]  C. Álvarez,et al.  Type 2 diabetes – a matter of failing β‐cell neogenesis? Clues from the GK rat model , 2007, Diabetes, obesity & metabolism.

[39]  Robert M. Wasson : An Appraisal , 2007 .

[40]  M. Kikuchi,et al.  Immunohistochemical and electron-microscopic observation of β-cells in pancreatic islets of spontaneously diabetic Goto–Kakizaki rats , 2006, Medical Molecular Morphology.

[41]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Falkenberg,et al.  TWINKLE Has 5′ → 3′ DNA Helicase Activity and Is Specifically Stimulated by Mitochondrial Single-stranded DNA-binding Protein* , 2003, Journal of Biological Chemistry.

[43]  G. Mithieux,et al.  beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. , 2001, Diabetes.

[44]  R. Wada,et al.  Accelerated loss of islet beta cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. , 1998, The American journal of pathology.

[45]  N. Welsh,et al.  Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of noninsulin-dependent diabetes. , 1995, Endocrinology.

[46]  P. Pavco,et al.  Structural and functional studies of the rat mitochondrial single strand DNA binding protein P16. , 1990, Archives of biochemistry and biophysics.