Thinking about genetic redundancy.

[1]  L. Guarente Synthetic enhancement in gene interaction: a genetic tool come of age. , 1993, Trends in genetics : TIG.

[2]  J. Thomas,et al.  Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. , 1993, Genetics.

[3]  B. Futcher,et al.  CLN3 functions in both daughter and mother cells of S. cerevisiae , 1993, Cell.

[4]  L. Goldstein,et al.  Functional redundancy in mitotic force generation , 1993, The Journal of cell biology.

[5]  J. Priess,et al.  Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans. , 1992, Development.

[6]  P. Meluh,et al.  Kinesin-related proteins required for assembly of the mitotic spindle , 1992, The Journal of cell biology.

[7]  K. Loo,et al.  Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly , 1992, The Journal of cell biology.

[8]  S. Higashijima,et al.  Subtype determination of Drosophila embryonic external sensory organs by redundant homeo box genes BarH1 and BarH2. , 1992, Genes & development.

[9]  S. Reed,et al.  Different G1 cyclins control the timing of cell cycle commitment in mother and daughter cells of the budding yeast S. cerevisiae , 1992, Cell.

[10]  C. Fyrberg,et al.  Perturbations of Drosophila alpha-actinin cause muscle paralysis, weakness, and atrophy but do not confer obvious nonmuscle phenotypes , 1992, The Journal of cell biology.

[11]  L. Goldstein,et al.  Genetic analysis of a Drosophila microtubule-associated protein , 1992, The Journal of cell biology.

[12]  J Nathans,et al.  Molecular genetics of human visual pigments. , 1992, Annual review of genetics.

[13]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[14]  Kim Nasmyth,et al.  The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast , 1991, Cell.

[15]  J Kimble,et al.  Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. , 1991, Development.

[16]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[17]  A. Joyner,et al.  Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. , 1991, Science.

[18]  Allan Bradley,et al.  Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice , 1991, Cell.

[19]  J. Hoch,et al.  Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay , 1991, Cell.

[20]  C. Slaughter,et al.  An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. , 1990, Science.

[21]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-10 is broadly expressed while required specifically for the determination of vulval cell fates. , 1990, Genes & development.

[22]  G. Fink,et al.  FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation , 1990, Cell.

[23]  Curt Wittenberg,et al.  An essential G1 function for cyclin-like proteins in yeast , 1989, Cell.

[24]  J. Thorner,et al.  A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae , 1989, Cell.

[25]  I. Greenwald,et al.  glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins , 1989, Cell.

[26]  M. Chalfie,et al.  Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. , 1989, Science.

[27]  F. Cross,et al.  DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae , 1988, Molecular and cellular biology.

[28]  W. Cavenee,et al.  Retinoblastoma and the progression of tumor genetics. , 1988, Trends in genetics : TIG.

[29]  H. Schnabel,et al.  The glp-1 locus and cellular interactions in early C. elegans embryos , 1987, Cell.

[30]  J. Kimble,et al.  glp-1 Is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans , 1987, Cell.

[31]  P. Leder,et al.  Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo , 1987, Cell.

[32]  Kim Nasmyth,et al.  Cell cycle control of the yeast HO gene: Cis- and Trans-acting regulators , 1987, Cell.

[33]  H. Horvitz,et al.  The lin-12 locus specifies cell fates in caenorhabditis elegans , 1983, Cell.

[34]  Robert A. Weinberg,et al.  Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes , 1983, Nature.

[35]  J. Sulston,et al.  Induction of neuronal branching in Caenorhabditis elegans. , 1983, Science.

[36]  A. Spradling The organization and amplification of two chromosomal domains containing drosophila chorion genes , 1981, Cell.

[37]  J. Culotti,et al.  A second class of acetylcholinesterase-deficient mutants of the nematode Caenorhabditis elegans. , 1981, Genetics.

[38]  H. Horvitz,et al.  unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. , 1980, Genetics.

[39]  I B Dawid,et al.  Repeated genes in eukaryotes. , 1980, Annual review of biochemistry.

[40]  P. Nowell The clonal evolution of tumor cell populations. , 1976, Science.

[41]  John Cairns,et al.  Mutation selection and the natural history of cancer , 1975, Nature.