EVOLUTIONARY INFERENCES FROM RESTRICTION MAPS OF MITOCHONDRIAL DNA FROM NINE TAXA OF XENOPUS FROGS

Restriction endonuclease cleavage maps were prepared by the double digestion method for mitochondrial DNAs (mtDNAs) purified from Xenopus borealis, X. clivii, X. fraseri, X. muelleri, X. ruwenzoriensis, X. vestitus, X. laevis victorianus, X. l. laevis, and a variant of X. laevis designated X. laevis “davis.” An average of 21 cleavage sites per genome were mapped with 11 restriction endonucleases. Among the four invariant sites found are three conserved not only among the Xenopus mtDNAs tested but also among nearly all vertebrate mtDNAs examined to date. Two of these are Sac II sites in the 12S and 16S ribosomal RNA genes, and one is a Hpa I site in the gene for asparagine transfer RNA. These three sites permit the alignment and comparison of mtDNAs from different vertebrate classes. Although most of the differences observed among the Xenopus maps are attributable to point mutations causing gain or loss of restriction sites, the maps also differ by three large length mutations in or near the displacement loop.

[1]  M. Stoneking,et al.  Mitochondrial DNA and two perspectives on evolutionary genetics , 1985 .

[2]  B. Roe,et al.  The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. , 1985, The Journal of biological chemistry.

[3]  W. Brown,et al.  Length variation and heteroplasmy are frequent in mitochondrial DNA from parthenogenetic and bisexual lizards (genus Cnemidophorus). , 1985, Genetics.

[4]  J. Avise,et al.  A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera. , 1985, Molecular biology and evolution.

[5]  J. Mounolou,et al.  Co-linear organization of Xenopus laevis and mouse mitochondrial genomes. , 1984, Biochemical and biophysical research communications.

[6]  R. Reeder,et al.  The mechanism of nucleolar dominance in xenopus hybrids , 1984, Cell.

[7]  W. Berg,et al.  Restriction Endonuclease Analysis of Salmonid Mitochondrial DNA , 1984 .

[8]  B. Mignotte,et al.  Mitochondrial DNA-binding proteins that bind preferentially to supercoiled molecules containing the D-loop region of Xenopus laevis mtDNA. , 1983, Biochemical and biophysical research communications.

[9]  A. R. Templeton,et al.  PHYLOGENETIC INFERENCE FROM RESTRICTION ENDONUCLEASE CLEAVAGE SITE MAPS WITH PARTICULAR REFERENCE TO THE EVOLUTION OF HUMANS AND THE APES , 1983, Evolution; international journal of organic evolution.

[10]  H. Kasinsky,et al.  Characterization of spermatid/sperm basic chromosomal proteins in the genus Xenopus (Anura, Pipidae). , 1982, The Journal of experimental zoology.

[11]  G. Brun,et al.  A restriction map of Xenopus laevis mitochondrial DNA. , 1982, European journal of biochemistry.

[12]  H. Woodland,et al.  H3 and H4 histone cDNA sequences from Xenopus: a sequence comparison of H4 genes. , 1982, Nucleic acids research.

[13]  F. Sanger,et al.  Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. , 1982, Journal of molecular biology.

[14]  D. A. Clayton,et al.  Sequence and gene organization of mouse mitochondrial DNA , 1981, Cell.

[15]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[16]  W. Brown,et al.  Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Jeffreys,et al.  Linkage of adult α- and β-globin genes in X. laevis and gene duplication by tetraploidization , 1980, Cell.

[18]  W. Brown Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Nei,et al.  Mathematical model for studying genetic variation in terms of restriction endonucleases. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W. Brown,et al.  Rapid evolution of animal mitochondrial DNA. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[21]  I. Dawid,et al.  Mapping of mitochondrial DNA in Xenopus laevis and X. borealis: the positions of ribosomal genes and D-loops. , 1978, Journal of molecular biology.

[22]  A. Wilson,et al.  Albumin phylogeny for clawed frogs (Xenopus). , 1977, Science.

[23]  Müller Wp Diplotene chromosomes of Xenopus hybrid oocytes , 1977 .

[24]  R. Estes Xenopus from the Palaeocene of Brazil and its zoogeographic importance , 1975, Nature.

[25]  I. Dawid Evolution of mitochondrial DNA sequences in Xenopus. , 1972, Developmental biology.

[26]  I. Dawid Mitochondrial RNA In Xenopus laevis. I. The expression of the mitochondrial genome. , 1972, Journal of molecular biology.

[27]  W. Knöchel,et al.  Globin evolution in the genus Xenopus: comparative analysis of cDNAs coding for adult globin polypeptides of Xenopus borealis and Xenopus tropicalis. , 1986, Journal of molecular evolution.

[28]  H. Noller Structure of ribosomal RNA. , 1984, Annual review of biochemistry.

[29]  C. Loumont Current distribution of the genus Xenopus in Africa and future prospects , 1984 .

[30]  P. Giorgi,et al.  Cellular DNA content in different species of Xenopus. , 1982, Comparative biochemistry and physiology. B, Comparative biochemistry.

[31]  M. Fischberg,et al.  The karyotype of Xenopus wittei Tinsley, Kobel, and Fischberg, another tetraploid anuran species (Pipidae). , 1980, Cytogenetics and Cell Genetics.

[32]  M. Fischberg,et al.  The karyotype of the hexaploid species Xenopus ruwenzoriensis Fischberg and Kobel (Anura: Pipidae). , 1980, Cytogenetics and Cell Genetics.

[33]  I. Dawid,et al.  STRUCTURE AND EVOLUTION OF ANIMAL MITOCHONDRIAL DNA , 1979 .

[34]  R. Tinsley,et al.  The karyotype of the tetraploid species Xenopus vestitus Laurent (Anura: pipidae). , 1977, Cytogenetics and cell genetics.

[35]  J. Tymowska A comparative study of the karyotypes of eight Xenopus species and subspecies possessing a 36-chromosome complement. , 1977, Cytogenetics and cell genetics.

[36]  J. Gurdon The control of gene expression in animal development , 1974 .

[37]  J. Bogart,et al.  Diploid-polyploid cryptic species pairs: a possible clue to evolution by polyploidization in anuran amphibians. , 1972, Cytogenetics.

[38]  D. H. D.Sc. A REPORT ON THE CULTURE OF THE SOUTH AFRICAN CLAWED FROG XENOPUS LAEVIS (DAUDIN) AT THE JONKERSHOEK INLAND FISH HATCHERY , 1949 .