High-resolution structure determination by continuous rotation data collection in MicroED

MicroED uses very small three-dimensional protein crystals and electron diffraction for structure determination. We present an improved data collection protocol for MicroED called 'continuous rotation'. Microcrystals are continuously rotated during data collection, yielding more accurate data. The method enables data processing with the crystallographic software tool MOSFLM, which resulted in improved resolution for the model protein lysozyme. These improvements are paving the way for the broad implementation and application of MicroED in structural biology.

[1]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[2]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[3]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[4]  Tamir Gonen,et al.  A suite of software for processing MicroED data of extremely small protein crystals , 2014, Journal of applied crystallography.

[5]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[6]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[7]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[8]  Z Dauter,et al.  Data-collection strategies. , 1999, Acta crystallographica. Section D, Biological crystallography.

[9]  Paul A. Midgley,et al.  Double conical beam-rocking system for measurement of integrated electron diffraction intensities , 1994 .

[10]  C. Gilmore,et al.  Structure model for the phase AlmFe derived from three-dimensional electron diffraction intensity data collected by a precession technique. Comparison with convergent-beam diffraction , 1998 .

[11]  Tamir Gonen,et al.  Three-dimensional electron crystallography of protein microcrystals , 2013, eLife.

[12]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[13]  R Giegé,et al.  Structure of tetragonal hen egg-white lysozyme at 0.94 A from crystals grown by the counter-diffusion method. , 2001, Acta crystallographica. Section D, Biological crystallography.

[14]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[15]  Randy J. Read,et al.  Evolving Methods for Macromolecular Crystallography , 2007 .

[16]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[17]  T. Gonen The collection of high-resolution electron diffraction data. , 2013, Methods in molecular biology.

[18]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[19]  K. Namba,et al.  Quantitative comparison of zero-loss and conventional electron diffraction from two-dimensional and thin three-dimensional protein crystals. , 2002, Biophysical Journal.

[20]  S. Hovmöller,et al.  Precession electron diffraction: observed and calculated intensities. , 2007, Ultramicroscopy.

[21]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[22]  Andrew G. W. Leslie,et al.  Processing diffraction data with mosflm , 2007 .