On distributional chaos in non-autonomous discrete systems

Abstract This paper studies distributional chaos in non-autonomous discrete systems generated by given sequences of maps in metric spaces. In the case that the metric space is compact, it is shown that a system is Li–Yorke δ-chaotic if and only if it is distributionally δ′-chaotic in a sequence; and three criteria of distributional δ-chaos are established, which are caused by topologically weak mixing, asymptotic average shadowing property, and some expanding condition, respectively, where δ and δ′ are positive constants. In a general case, a criterion of distributional chaos in a sequence induced by a Xiong chaotic set is established.

[1]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[2]  Leszek Szała Chaotic behaviour of uniformly convergent non-autonomous systems with randomly perturbed trajectories , 2014, 1408.2569.

[3]  Jaroslav Smítal,et al.  Distributional chaos for triangular maps , 2004 .

[4]  Gongfu Liao,et al.  Recurrent point set of the shift on Σ and strong chaos , 2002 .

[5]  Hao Zhu,et al.  Devaney Chaos in Nonautonomous Discrete Systems , 2016, Int. J. Bifurc. Chaos.

[6]  Symbolic dynamics , 2008, Scholarpedia.

[7]  Jian Li,et al.  Shadowing Property, Weak Mixing and Regular Recurrence , 2013, Journal of Dynamics and Differential Equations.

[8]  M. Stefánková Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval , 2015 .

[9]  Francisco Balibrea,et al.  The three versions of distributional chaos , 2005 .

[10]  Alfredo Peris,et al.  Mixing properties for nonautonomous linear dynamics and invariant sets , 2013, Appl. Math. Lett..

[11]  Guanrong Chen,et al.  Chaos of time-varying discrete dynamical systems , 2009 .

[12]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[13]  Guanrong Chen,et al.  Chaos of discrete dynamical systems in complete metric spaces , 2004 .

[14]  Risong Li,et al.  Distributional chaos in a sequence and topologically weak mixing for nonautonomous discrete dynamical systems , 2019, Journal of Mathematics and Computer Science.

[15]  Guanrong Chen,et al.  Chaos of a sequence of maps in a metric space , 2006 .

[16]  J. Dvořáková Chaos in nonautonomous discrete dynamical systems , 2012 .

[17]  Jaroslav Smítal,et al.  Measures of chaos and a spectral decomposition of dynamical systems on the interval , 1994 .

[18]  Wen Huang,et al.  Devaney's chaos or 2-scattering implies Li–Yorke's chaos , 2002 .

[19]  Hao Zhu,et al.  Strong Li-Yorke Chaos for Time-Varying Discrete Dynamical Systems with A-Coupled-Expansion , 2015, Int. J. Bifurc. Chaos.

[20]  S. Danny Interval Maps , 2005 .

[21]  Yuming Shi,et al.  Estimations of topological entropy for non-autonomous discrete systems , 2015, 1506.01232.

[22]  P. Oprocha Relations between distributional and Devaney chaos. , 2006, Chaos.

[23]  Devaney chaos plus shadowing implies distributional chaos. , 2016, Chaos.

[24]  Yuming Shi,et al.  Some weak versions of distributional chaos in non-autonomous discrete systems , 2019, Commun. Nonlinear Sci. Numer. Simul..

[25]  Guifeng Huang,et al.  Distributional chaos in a sequence , 2007 .

[26]  Furstenberg family and chaos , 2007 .

[27]  Guanrong Chen,et al.  On various definitions of shadowing with average error in tracing , 2014, 1406.5822.

[28]  I. P. Kornfelʹd,et al.  Ergodic Theory , 1963 .

[29]  Rongbao Gu,et al.  The asymptotic average shadowing property and transitivity , 2007 .

[30]  Xinxing Wu,et al.  Chaos in a class of non-autonomous discrete systems , 2013, Appl. Math. Lett..

[31]  Francisco Balibrea,et al.  Weak mixing and chaos in nonautonomous discrete systems , 2012, Appl. Math. Lett..

[32]  L’uboḿır Snoha Dense Chaos , 2010 .

[33]  C. Caramanis What is ergodic theory , 1963 .

[34]  Tan Feng THE EQUIVALENCE RELATIONSHIP BETWEEN LI-YORKE δ-CHAOS AND DISTRIBUTIONAL δ-CHAOS IN A SEQUENCE , 2010 .

[35]  Piotr Oprocha,et al.  DISTRIBUTIONAL CHAOS REVISITED , 2009 .

[36]  Devaney’s chaos implies distributional chaos in a sequence , 2009 .

[37]  T. Arai,et al.  P-chaos implies distributional chaos and chaos in the sense of Devaney with positive topological entropy , 2007 .

[38]  Xiang Wang,et al.  Asymptotic average shadowing property, almost specification property and distributional chaos , 2016 .

[39]  Jose S. Cánovas,et al.  Li–Yorke chaos in a class of nonautonomous discrete systems , 2011 .

[40]  James A. Yorke,et al.  INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .