Camera calibration method based on phase encoding for out-of-focus condition

The state-of-art camera calibration method requires the user to provide accurate pixel coordinates of calibration plate feature points. For some cameras with special sensing range, general calibration objects' (such as calibration plates with a centimeter-long dimension) using range is outside their clear sensing range. Using these cameras to take a picture for general calibration objects, you can only get out-of-focused blurred images that can not accurately extract feature points' pixel coordinates. This paper analyzes the influence on the phase of the structured light based on sine grating (abbreviated as sinusoidal structured light) when optical system is in defocus state. Based on the fact that the state of focus is independent of the phase of sinusoidal structured light, a method of phase-shifted sinusoidal structured light encoding by phase shift is proposed to encode the feature points on the calibration object and this method realizes the calibration of the camera under out-of-focus condition. The experimental results show that the maximal deviation of focal length from the real value is 0.47% and the maximal pixel reprojection error is 0.17 pixels. This paper provides a solution to camera calibration with a special sensing range.