GPSy: a cross-species gene prioritization system for conserved biological processes—application in male gamete development

We present gene prioritization system (GPSy), a cross-species gene prioritization system that facilitates the arduous but critical task of prioritizing genes for follow-up functional analyses. GPSy’s modular design with regard to species, data sets and scoring strategies enables users to formulate queries in a highly flexible manner. Currently, the system encompasses 20 topics related to conserved biological processes including male gamete development discussed in this article. The web server-based tool is freely available at http://gpsy.genouest.org.

[1]  Bart De Moor,et al.  Mapping biomedical concepts onto the human genome by mining literature on chromosomal aberrations , 2007, Nucleic acids research.

[2]  M. Herman,et al.  A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. , 2006, Developmental biology.

[3]  Yuhui Qiu,et al.  PGMapper: a web-based tool linking phenotype to genes , 2008, Bioinform..

[4]  Frances S. Turner,et al.  POCUS: mining genomic sequence annotation to predict disease genes , 2003, Genome Biology.

[5]  Hendrik C. Korswagen,et al.  Distinct β-catenins mediate adhesion and signalling functions in C. elegans , 2000, Nature.

[6]  Miguel A. Andrade-Navarro,et al.  Génie: literature-based gene prioritization at multi genomic scale , 2011, Nucleic Acids Res..

[7]  M. Bucan,et al.  Promoter features related to tissue specificity as measured by Shannon entropy , 2005, Genome Biology.

[8]  Bart De Moor,et al.  Endeavour update: a web resource for gene prioritization in multiple species , 2008, Nucleic Acids Res..

[9]  Gaston H. Gonnet,et al.  Algorithm of OMA for large-scale orthology inference , 2008, BMC Bioinformatics.

[10]  Karen L. Mohlke,et al.  Data and text mining A computational system to select candidate genes for complex human traits , 2007 .

[11]  Li Wang,et al.  CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data , 2007, Bioinform..

[12]  Kimberly Van Auken,et al.  WormBase: a comprehensive resource for nematode research , 2009, Nucleic Acids Res..

[13]  Jason Y. Liu,et al.  Analysis of protein sequence and interaction data for candidate disease gene prediction , 2006, Nucleic acids research.

[14]  Bassem A. Hassan,et al.  Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.

[15]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[16]  Tetsuro Toyoda,et al.  PosMed (Positional Medline): prioritizing genes with an artificial neural network comprising medical documents to accelerate positional cloning , 2009, Nucleic Acids Res..

[17]  A. Liekens,et al.  BioGraph: unsupervised biomedical knowledge discovery via automated hypothesis generation , 2011, Genome Biology.

[18]  Giorgio Valle,et al.  The Gene Ontology in 2010: extensions and refinements , 2009, Nucleic Acids Res..

[19]  Luca Benini,et al.  TOM: enhancement and extension of a tool suite for in silico approaches to multigenic hereditary disorders , 2008, Bioinform..

[20]  Martin M Matzuk,et al.  The biology of infertility: research advances and clinical challenges , 2008, Nature Medicine.

[21]  Muin J. Khoury,et al.  Gene Prospector: An evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases , 2008, BMC Bioinformatics.

[22]  Jerome F Strauss,et al.  Targeted deletion of Tssk1 and 2 causes male infertility due to haploinsufficiency. , 2008, Developmental biology.

[23]  Audrey Bihouée,et al.  Bioinformatics Applications Note Gene Expression Madgene: Retrieval and Processing of Gene Identifier Lists for the Analysis of Heterogeneous Microarray Datasets , 2022 .

[24]  P. Visconti,et al.  Expression analysis of the human testis-specific serine/threonine kinase (TSSK) homologues. A TSSK member is present in the equatorial segment of human sperm. , 2004, Molecular human reproduction.

[25]  Peer Bork,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[26]  Peilin Jia,et al.  A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases-schizophrenia as a case , 2009, Bioinform..

[27]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[28]  Vincent J. Carey,et al.  Case Studies Using Graphs on Biological Data , 2005 .

[29]  Jing Chen,et al.  Improved human disease candidate gene prioritization using mouse phenotype , 2007, BMC Bioinformatics.

[30]  Ioannis Xenarios,et al.  MIMAS 3.0 is a Multiomics Information Management and Annotation System , 2009, BMC Bioinformatics.

[31]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[32]  Dennis B. Troup,et al.  NCBI GEO: archive for functional genomics data sets—10 years on , 2010, Nucleic Acids Res..

[33]  David J. Porteous,et al.  Speeding disease gene discovery by sequence based candidate prioritization , 2005, BMC Bioinformatics.

[34]  Yves Moreau,et al.  PINTA: a web server for network-based gene prioritization from expression data , 2011, Nucleic Acids Res..

[35]  Frédéric Chalmel,et al.  Profiling spermatogenic failure in adult testes bearing Sox9-deficient Sertoli cells identifies genes involved in feminization, inflammation and stress , 2010, Reproductive biology and endocrinology : RB&E.

[36]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[37]  S. Keeney,et al.  Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. , 2000, Molecular cell.

[38]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[39]  Peter M Visscher,et al.  Prioritization of Positional Candidate Genes Using Multiple Web-Based Software Tools , 2007, Twin Research and Human Genetics.

[40]  R. Kamath,et al.  Genome-wide RNAi screening in Caenorhabditis elegans. , 2003, Methods.

[41]  Joyce A. Mitchell,et al.  Using literature-based discovery to identify disease candidate genes , 2005, Int. J. Medical Informatics.

[42]  R. Camerini-Otero,et al.  The mouse Spo11 gene is required for meiotic chromosome synapsis. , 2000, Molecular cell.

[43]  Gaston H. Gonnet,et al.  OMA 2011: orthology inference among 1000 complete genomes , 2010, Nucleic Acids Res..

[44]  Bart De Moor,et al.  A guide to web tools to prioritize candidate genes , 2011, Briefings Bioinform..

[45]  Ronald W. Davis,et al.  The core meiotic transcriptome in budding yeasts , 2000, Nature Genetics.

[46]  Desmond J. Higham,et al.  GeneRank: Using search engine technology for the analysis of microarray experiments , 2005, BMC Bioinformatics.

[47]  Asa Ben-Hur,et al.  The use of gene ontology evidence codes in preventing classifier assessment bias , 2009, Bioinform..

[48]  C. Wijmenga,et al.  Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. , 2006, American journal of human genetics.

[49]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2011 , 2010, Nucleic Acids Res..

[50]  Jana Marie Schwarz,et al.  GeneDistiller—Distilling Candidate Genes from Linkage Intervals , 2008, PloS one.

[51]  Christophe Dessimoz,et al.  Phylogenetic and Functional Assessment of Orthologs Inference Projects and Methods , 2009, PLoS Comput. Biol..

[52]  Steven C. Lawlor,et al.  MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data , 2003, Genome Biology.

[53]  Ibrahim Emam,et al.  ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments , 2010, Nucleic Acids Res..

[54]  H C Clevers,et al.  Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. , 2000, Nature.

[55]  A. Butte,et al.  AILUN: reannotating gene expression data automatically , 2007, Nature Methods.

[56]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[57]  Frédéric Chalmel,et al.  The Annotation, Mapping, Expression and Network (AMEN) suite of tools for molecular systems biology , 2008, BMC Bioinformatics.

[58]  Susumu Goto,et al.  KEGG for representation and analysis of molecular networks involving diseases and drugs , 2009, Nucleic Acids Res..

[59]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..

[60]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[61]  Gautier Koscielny,et al.  Ensembl 2012 , 2011, Nucleic Acids Res..

[62]  Howard L McLeod,et al.  CANDID: a flexible method for prioritizing candidate genes for complex human traits , 2008, Genetic epidemiology.

[63]  Yongjin Li,et al.  Discovering disease-genes by topological features in human protein-protein interaction network , 2006, Bioinform..

[64]  Juri Rappsilber,et al.  Arginine Methylation of Vasa Protein Is Conserved across Phyla* , 2010, The Journal of Biological Chemistry.

[65]  Peng Yue,et al.  SNPs3D: Candidate gene and SNP selection for association studies , 2006, BMC Bioinformatics.

[66]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[67]  Gary E. Swan,et al.  Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence , 2008, Bioinform..

[68]  V. Reinke,et al.  Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans , 2003, Development.

[69]  S. Pongor,et al.  The quest for orthologs: finding the corresponding gene across genomes. , 2008, Trends in genetics : TIG.

[70]  A. Fire,et al.  Specific interference by ingested dsRNA , 1998, Nature.

[71]  R. E. Esposito,et al.  The role of the SPO11 gene in meiotic recombination in yeast. , 1985, Genetics.

[72]  Jia-Ren Lin,et al.  An application of bioinformatics and text mining to the discovery of novel genes related to bone biology. , 2007, Bone.

[73]  Frédéric Chalmel,et al.  The conserved transcriptome in human and rodent male gametogenesis , 2007, Proceedings of the National Academy of Sciences.